при каких значениях синус меняется на косинус

Формулы приведения

Тригонометрические тождества — математические выражения для тригонометрических функций, выполняющиеся при всех значениях аргумента (из общей области определения).

Правила преобразования формул приведения.

2) Определяем знак («+» или «-«) значения первоначальной функции. Преобразованное выражение сохраняет знак своего родителя.

364 6fea8f2438bbd4fba5877bf9a1ff6825

308 ce954a9ac4b3584a8aa0b084ea407c40

319 2ee128eebab0bc0f26cce427a04e3efd

899 fbad0552b76f34686ee9df126df90680

Формулы приведения.

323 602d6443724cf5a7979f42a6902cd083

371 36bb629ad646fd658a327f62ce6ae66c

Закон формул приведения, или как, не заучивая формулы, знать их.

1. Определяем знак функции в нужной четверти.

906 d65c0b2f59c2b835d14d93c5c2bbb44a

2. Пользуемся, ниже приведенными, правилами:

374 00d006e82b82c9d4d2ebaa7abfe1cde9

Функция меняется на кофункцию.

(синус на косинус либо в обратную сторону, тангенс на котангенс либо в обратную сторону).

679 179cfd5860d7a88567e2a58de9512ce3

Функция на кофункцию НЕ изменяется.

Выше записанные формулы представляют в виде таблицы:

749 ba5d18e65df7d1fef4d9be2fdb185c23

Рассчитать тригонометрические и другие формулы вы можете на нашем инженерном калькуляторе онлайн

Источник

Формулы приведения

Часто в задачах встречаются выражения вида а также или — то есть такие, где к аргументу прибавляется нечетное число, умноженное на или целое число, умноженное на Они упрощаются с помощью формул приведения.

Эти формулы называются так потому, что с их помощью можно привести выражения к более простым.

Например,

Зубрить наизусть формулы приведения не нужно. Достаточно знать правило, состоящее из двух пунктов.

1) Если в тригонометрической формуле к аргументу прибавляется (или вычитается из него) — в общем, угол, лежащий на вертикальной оси, — функция меняется на кофункцию. Синус меняется на косинус, косинус на синус, тангенс на котангенс и наоборот.

Если же мы прибавляем или вычитаем — в общем, то, что лежит на горизонтальной оси, — функция на кофункцию не меняется.

Это легко запомнить. Если прибавляемый угол лежит на вертикальной оси — вертикально киваем головой, говорим: «Да, да, меняется функция на кофункцию». Если прибавляемый угол лежит на горизонтальной оси — горизонтально мотаем головой, говорим: «Нет, нет, не меняется функция на кофункцию».

Это первая часть правила. Теперь вторая.

2) Знак получившегося выражения такой же, каким будет знак тригонометрической функции в левой его части, при условии, что аргумент мы берем из первой четверти.

Упростим, например, выражение Функция меняется на кофункцию — и в результате получится синус. Взяв x из первой четверти и прибавив к нему попадем во вторую четверть. Во второй четверти косинус отрицателен. Значит, получится

160

Посмотрим, как формулы приведения применяются в задачах ЕГЭ по математике.

1. Найдите значение выражения:

Мы упростили выражения в скобках.

4. Найдите значение выражения:

5. Упростите выражение:

Ты нашел то, что искал? Поделись с друзьями!

Источник

Формулы приведения. Как запомнить?

formuli3

Не пугайтесь, учить их не надо, как и многие другие формулы в курсе математики. Лишней информацией голову забивать не нужно, необходимо запоминать «ключики» или законы, и вспомнить или вывести нужную формулу проблемой не будет. Кстати, когда я пишу в статьях «… нужно выучить. » – это значит, что действительно, это необходимо именно выучить.

Если вы с формулами приведения не знакомы, то простота их вывода вас приятно удивит – есть «закон», при помощи которого это легко сделать. И любую из 32 формул вы напишите за 5 секунд.

*А тем, кто хочет набить руку решая задачи, вот здесь разобраны 22 примера от простых до самых сложных.

Перечислю лишь некоторые задачи, типы которых возможны на экзамене, где без знания этих формул есть большая вероятность потерпеть фиаско в решении. Например:

– задачи на решение прямоугольного треугольника, где речь идёт о внешнем угле, да и задачах на внутренние углы некоторые из этих формул тоже необходимы.

– задачи на вычисление значений тригонометрических выражений; преобразования числовых тригонометрических выражений; преобразования буквенных тригонометрических выражений.

– задачи на касательную и геометрический смысл касательной, требуется формула приведения для тангенса, а также другие задачи.

– стереометрические задачи, по ходу решения не редко требуется определить синус или косинус угла, который лежит в пределах от 90 до 180 градусов.

И это лишь те моменты, которые касаются ЕГЭ. А в самом курсе алгебры есть множество задач, при решении которых, без знания формул приведения просто не обойтись.

Так что же к чему приводится и как оговоренные формулы упрощают для нас решение задач?

Например, вам нужно определить синус, косинус, тангенс или котангенс любого угла от 0 до 450 градусов:

угол альфа лежит пределах от 0 до 90 градусов

Итак, необходимо уяснить «закон», который здесь работает:

1. Определите знак функции в соответствующей четверти.

2. Запомните следующее:

76

функция изменяется на кофункцию

86

функция на кофункцию не изменяется

Что означает понятие — функция изменяется на кофункцию?

Ответ: синус меняется на косинус или наоборот, тангенс на котангенс или наоборот.

Теперь по представленному закону запишем несколько формул приведения самостоятельно:

Данный угол лежит в третьей четверти, косинус в третьей четверти отрицателен. Функцию на кофункцию не меняем, так как у нас 180 градусов, значит:

Угол лежит в первой четверти, синус в первой четверти положителен. Не меняем функцию на кофункцию, так как у нас 360 градусов, значит:

14 2

Вот вам ещё дополнительное подтверждение того, что синусы смежных углов равны:

Угол лежит во второй четверти, синус во второй четверти положителен. Не меняем функцию на кофункцию, так как у нас 180 градусов, значит:

В статье на решение прямоугольного треугольника был отмечен такой факт – синус одного острого угла в прямоугольном треугольнике равен косинусу другого острого угла в нём.

И наоборот – косинус одного острого угла в прямоугольном треугольнике равен синусу другого острого угла в нём. Вот вам и подтверждение этого с помощью формул приведения:

Конечно, определить значения углов можно и без формул приведения, по тригонометрической окружности. И если вы умеете это делать, то очень хорошо. Но поняв, как работают формулы приведения, вы сможете делать это очень быстро.

Данные формулы можно также выразить в табличной форме:

Когда в решениях задач буду использовать формулы приведения, то обязательно буду ссылаться на эту статью, чтобы вы всегда смогли освежить в памяти представленную выше теорию. На этом всё. Надеюсь, материал был вам полезен.

Источник

Формулы приведения. Как быстро получить любую формулу приведения

1d3d633ced45b762c0da578178783510

Формулы приведения разработаны для углов, представленных в одном из следующих видов: \(\frac<\pi><2>+a\), \(\frac<\pi><2>-a\), \(π+a\), \(π-a\), \(\frac<3\pi><2>+a\), \(\frac<3\pi><2>-a\), \(2π+a\) и \(2π-a\). Аналогично их можно использовать для углов представленных в градусах: \(90^°+a\), \(90^°-a\), \(180^°+a\), \(180^°-a\), \(270^°+a\), \(270^°-a\), \(180^°+a\), \(180^°-a\). К счастью, учить наизусть формулы привидения вам не придется, потому что есть легкий и надежный способ вывести нужную за пару секунд.

Как быстро получить любую формулу приведения

Для начала обратите внимание, что все формулы имеют похожий вид:

495093c243f970419bdeed0ec1bf8410

Едем дальше. Так как исходная функция и ее аргумент нам обычно даны, то весь вывод нужной формулы сводится к двум вопросам:
— как определить знак перед конечной функцией (плюс или минус)?
— как определить меняется ли функция на кофункцию или нет?

Как определить знак перед конечной функцией (плюс или минус)?

Какой знак был у исходной функции в исходной четверти, такой знак и нужно ставить перед конечной функцией.

Для того, чтобы ответить на этот вопрос, представим, что \(a\) – угол от \(0\) до \(\frac<\pi><2>\), т.е. лежит в пределах \(0°…90^°\) (хотя это может быть не так, но для определения знака данная условность необходима). В какой четверти тригонометрической окружности при таком условии будет находиться точка, обозначающая угол \(\frac<3\pi><2>-a\)?
Чтобы ответить на вопрос, надо от точки, обозначающей \(\frac<3\pi><2>\), повернуть в отрицательную сторону на угол \(a\).

fa1b672752868a06e6173c85a9972e81

В какой четверти мы окажемся? В третьей. А какой же знак имеет косинус в третьей четверти? Минус. Поэтому перед итоговой функцией будет стоят минус: \(cos(\frac<3\pi><2>-a)=-. \)

Источник

Формулы приведения: доказательство, примеры, мнемоническое правило

Данная статья посвящена подробному изучению тригонометрических формул приведения. Дан полный список формул приведения, показаны примеры их использования, приведено доказательство верности формул. Также в статье дано мнемоническое правило, которое позволяет выводить формулы приведения, не запоминая каждую формулу.

Формулы приведения. Список

Фомулы приведения позволяют приводить основные тригонометрические функции углов произвольной величины к функциям углов, лежащих в интервале от 0 до 90 градусов (от 0 до π 2 радиан). Оперировать углами от 0 до 90 градусов гораздо удобнее, чем работать со сколь угодно большими значениями, поэтому формулы приведения широко применяются при решении задач тригонометрии.

Прежде, чем мы запишем сами формулы, уточним несколько важных для понимания моментов.

Теперь перейдем непосредственно к формулам приведения.

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов. запишем все формулы в виде таблицы.

В данном случае формулы записаны с радианами. Однако можно записать их и с использованием градусов. Достаточно только перевести радианы в градусы, заменив π на 180 градусов.

Примеры использования формул приведения

Покажем, как пользоваться формулами приведения и как указанные формулы применяются при решении практических примеров.

В зависимости от представления угла используется соответствующая формула приведения.

Возьмем тот же угол α = 16 π 3 и вычислим его тангенс

Пример 1. Использование формул приведения

Представим угол α = 16 π 3 в виде α = π + π 3 + 2 π · 2

Этому представлению угла будет соответствовать формула приведения

t g ( π + α + 2 π z ) = t g α

t g 16 π 3 = t g π + π 3 + 2 π · 2 = t g π 3

Воспользовавшись таблицей, укажем значение тангенса

Пример 2. Использование формул приведения

Наконец, для третьего представления угла запишем

Пример 3. Использование формул приведения

Теперь приведем пример на использование формул приведения посложнее

Пример 4. Использование формул приведения

Представим sin 197 ° через синус и косинус острого угла.

Для того, чтобы можно было применять формулы приведения, нужно представить угол α = 197 ° в одном из видов

Теперь посмотрим на формулы приведения для синусов и выберем соответствующие

Мнемоническое правило

1. Аргумент исходной функции представляется в одном из видов

± α + 2 πz π 2 ± α + 2 πz π ± α + 2 πz 3 π 2 ± α + 2 πz

Угол α должен лежать в пределах от 0 до 90 градусов.

2. Определяется знак исходной тригонометрической функции. Такой же знак будет иметь функция, записываемая в правой части формулы.

Чтобы пользоваться мнемоническим праилом для формул приведения нужно уметь определять знаки тригонометрических функций по четвертям единичной окружности. Разберем примеры применения мнемонического правила.

Пример 1. Использование мнемонического правила

А теперь заглянем в формулы, приведенные выше, и убедимся в том, что мнемоническое правило работает.

Пример 2. Использование мнемонического правила

1. Представим углол α = 777 ° в необходимом виде

Теперь рассмотрим пример, который показывает, как важно правильно определить знак тригонометрической функции и правильно представить угол при использовании мнемонического правила. Повторим еще раз.

Угол α должен быть острым!

Пример 3. Использование мнемонического правила

Представим угол α = 5 π 3 в необходимом виде и воспользуемся правилом

Неверный результат обусловлен тем, что угол 2 π 3 не явдяется острым.

Формулы приведения. Доказательство

Первые 16 формул следуют напрямую из свойств основных тригонометрических функций: синуса, косинуса, тангенса и котанганса.

Приведем доказательство формул приведения для синусов и косинусов

screenshot 1

С учетом основных тождеств тригонометрии и только что доказанного, можно записать

В доказательстве используются свойства тригонометрических функций с аргументами, противоположными по знаку.

Все остальные формулы приведения можно доказать на базе записанных выше.

Источник

admin
Производства
Adblock
detector