- Несобственные интегралы, зависящие от параметра. Равномерная сходимость
- Равномерная сходимость несобственных интегралов по параметру.
- Признаки равномерной сходимости несобственных интегралов по параметру.
- Непрерывность, интегрируемость и дифференцируемость несобственного интеграла по параметру.
- Перестановка порядка интегрирования в том случае, когда оба интеграла несобственные.
- Примеры исследования несобственных интегралов на сходимость
Несобственные интегралы, зависящие от параметра. Равномерная сходимость
Равномерная сходимость несобственных интегралов по параметру.
Предположим, что выполнены следующие условия:
Интеграл
$$
\int\limits_<0>^ <+\infty>e^ <-x>\cos xy\ dx\label
$$
сходится равномерно по параметру у на интервале \((-\infty, +\infty) = \mathbb
\(\vartriangle\) Для любого \(\varepsilon > 0\) существует \(b’ = \displaystyle\ln \frac<2><\varepsilon>\) такое, что для любого \(\xi \in [b’, +\infty)\) и любого \(y \in Y\) выполняется неравенство
$$
\left|\int\limits_<\xi>^ <+\infty>e^ <-x>\cos xy\ dx\right| \leq \int\limits_<\xi>^ <+\infty>e^<-x>\ dx = e^ <-\xi>\leq e^ <-b’>= \frac<\varepsilon> <2>Определение.
Интеграл
$$
I_
$$
сходится неравномерно по параметру \(y\) на полуинтервале \([0, +\infty)\).
\(\vartriangle\) Возьмем \(\varepsilon = e^<-1>\). Тогда для любого \(b’ \in (0, +\infty)\) существует \(\xi = b’\) и \(y = 1/b’\) такие, что
$$
\int\limits_<\xi>^ <+\infty>ye^<-xy>\ dx = \int\limits_^ <+\infty>ye^<-xy>\ dx = \int\limits_^ <+\infty>e^<-t>\ dt = \int\limits_<1>^ <+\infty>e^<-t>\ dt = e^ <-1>= \varepsilon,\nonumber
$$
и поэтому интеграл \(\displaystyle I_
Признаки равномерной сходимости несобственных интегралов по параметру.
(Признак Вейерштрасса равномерной сходимости несобственного интеграла по параметру).
Пусть для любого \(y \in Y\) функция \(f(x, y)\) интегрируема по \(x\) на любом отрезке \([a, b’] \subset [a, b)\), и пусть на \([a, b)\) существует функция \(\varphi(x)\) такая, что для всех \(y \in Y\) и всех \(x \in [a, b)\) выполнено неравенство \(|f(x, y)| \leq \varphi(x)\), а несобственный интеграл \(\displaystyle\int\limits_^ \varphi(x)\ dx\) сходится.
Интеграл
$$
\int\limits_<0>^ <+\infty>\frac<\cos xy><1+x^<2>>\ dx\label
$$
сходится равномерно по параметру \(y\) на интервале \((-\infty, +\infty)\).
\(\vartriangle\) Так как \(\displaystyle\frac<|\cos xy|><1+x^<2>> \leq \frac<1><1+x^<2>>\) и \(\displaystyle\int\limits_<0>^ <+\infty>\frac
Докажем признак Дирихле равномерной сходимости для интегралов вида
$$
\int\limits_^ <+\infty>f(x, y) g(x, y)\ dx,\ y \in Y.\label
$$
(Признак Дирихле равномерной сходимости несобственного интеграла по параметру).
Тогда интеграл \eqref
\(\circ\) По признаку Дирихле несобственный интеграл \eqref
Так как по условию 4) функция \(\psi(x) \rightarrow 0\) при \(x \rightarrow +\infty\), то для любого \(\varepsilon > 0\) существует \(a’ > a\) такое, что для любого \(\xi \in [a’, +\infty)\) выполнено неравенство
$$
\psi(\xi) Замечание 2.
Если \(+\infty\) — единственная особая точка сходящегося интеграла \eqref
Поэтому для справедливости утверждения теоремы 2 достаточно, чтобы условия 1)-4) выполнялись на некотором промежутке \([a’, +\infty) \subset [a, +\infty)\).
Интеграл
$$
\int\limits_<0>^ <+\infty>e^ <-xy>\frac<\sin x>
$$
сходится равномерно по параметру \(y\) при \(y \in [0, +\infty)\).
\(\vartriangle\) Так как функция \(\sin x\) имеет ограниченную первообразную, а при \(x \geq 1\), \(y \geq 0\) выполнены следующие условия:
$$
\frac<\partial> <\partial x>\left(\frac
(Критерий Коши равномерной сходимости несобственного интеграла по параметру).
Получаем, что для любого \(\xi \in [b’, b)\) и для любого \(y \in Y\) выполнено неравенство \(\displaystyle\left|\int\limits_<\xi>^ f(x, y)\ dx\right| \leq \varepsilon\), из которого следует, что интеграл \(\int\limits_^ f(x, y)\ dx\) сходится равномерно по параметру \(y\) на множестве \(Y\). \(\bullet\)
Применяя правило построения отрицания, получаем из критерия Коши полезное следствие.
Если существует \(\varepsilon_ <0>> 0\) такое, что для любого \(b’ \in [a, b)\) существуют \(\xi_<0>, \xi’_ <0>\in [b’, b)\) и существует \(y_ <0>\in Y\) такие, что
$$
\left|\int\limits_<\xi_<0>>^<\xi’_<0>> f(x, y_<0>)\ dx\right| \geq \varepsilon_<0>,
$$
то интеграл \(\displaystyle\int\limits_^ f(x, y)\ dx\) не сходится равномерно по параметру \(y\) на множестве \(Y\).
Интеграл
$$
\int\limits_<0>^ <+\infty>e^<-\alpha x^<2>>\ dx\label
$$
сходится равномерно по параметру \(\alpha\) на множестве \([\alpha_<0>, +\infty)\), \(\alpha_ <0>> 0\), и сходится неравномерно на множестве \((0, +\infty)\).
\(\vartriangle\) Пусть \(\alpha \geq \alpha_ <0>> 0\). Так как \(e^<-\alpha x^<2>> \leq e^ <-\alpha_<0>x^<2>>\) и \(\displaystyle\int\limits_<0>^ <+\infty>e^<-\alpha x^<2>>\ dx\) сходится, то по признаку Вейерштрасса интеграл \eqref
Пусть теперь \(\alpha \in (0, +\infty)\). Покажем, что на \((0, +\infty)\) интеграл \eqref
$$
\int\limits_<\xi_<0>>^<\xi’_<0>> e^ <-\alpha_<0>x^<2>>\ dx = \int\limits_^ e^ <-\alpha_<0>x^<2>>\ dx \geq e^ <-\alpha_<0>(b+1)^<2>> \int\limits_^ dx = e^ <-1>= \varepsilon_<0>\nonumber
$$
и, следовательно, интеграл \eqref
Непрерывность, интегрируемость и дифференцируемость несобственного интеграла по параметру.
\(\vartriangle\) Если функцию \(\displaystyle\frac<\sin x>
При рассмотрении примера 4 было показано, что интеграл \eqref
(Теорема о перестановке порядка интегрирования).
\(\vartriangle\) Воспользуемся известной формулой
$$
\int\limits_<0>^ <+\infty>e^ <-xy>\sin x\ dx = \frac<1><1+y^<2>>,\ y > 0.\label
$$
Интеграл \eqref
$$
|e^ <-xy>\sin x\ dx| \leq e^<-\delta x>,\quad \int\limits_<0>^ <+\infty>e^<-\delta x>\ dx = \frac<1><\delta>.\nonumber
$$
Применяя теорему 5 и интегрируя равенство \eqref
$$
\operatorname
$$
Так как \(|\sin x| \leq x\) при \(x \geq 0\), то
$$
\left|\int\limits_<0>^ <+\infty>\dfrac
$$
Переходя к пределу при \(N \rightarrow +\infty\) в равенстве \eqref
$$
\frac<\pi><2>-\operatorname
$$
Воспользовавшись равенством \eqref
(Теорема о дифференцировании несобственного интеграла по параметру).
Пусть функции \(f(x, y)\) и \(f_
\(\circ\) Пусть \(c \leq y \leq d\). Рассмотрим интеграл \(\displaystyle\int\limits_^ f_
Покажем, что \(C_ <2>= 0\). Так как
$$
|I_<1>(y)| = \left|\int\limits_<0>^ <+\infty>\frac<\cos xy><1+x^<2>>\ dx\right| \leq \int\limits_<0>^ <+\infty>\frac<|\cos xy|><1+x^<2>>\ dx \leq \int\limits_<0>^ <+\infty>\frac
$$
то \(I_<1>(y)\) есть ограниченная функция на \([\delta, +\infty)\). Так как \(e^
Замечая, что интеграл Лапласа \(I_<1>(y)\) есть четная функция на \((-\infty, +\infty)\), а интеграл \(I_<2>(y)\) есть нечетная функция на \((-\infty, +\infty)\), перепишем равенство \eqref
$$
I_<1>(y) = C_<1>e^<-|y|>,\ I_<2>(y) = C_<1>\ \operatorname
$$
Для определения произвольной постоянной \(C_<1>\) воспользуемся тем, что интеграл Лапласа \(I_<1>(y)\) сходится равномерно по параметру \(y\) на \((-\infty, +\infty)\) (пример 3). Поэтому \(I_<1>(y)\) есть непрерывная функция в точке \(y = 0\). Следовательно,
$$
\frac<\pi> <2>= \int\limits_<0>^ <+\infty>\frac
$$
Теперь формулы \eqref
$$
\int\limits_<0>^ <+\infty>\frac<\cos xy><1+x^<2>>\ dx = \frac<\pi><2>e^<-|y|>,\\ \int\limits_<0>^ <+\infty>\frac
$$
То, что формулы \eqref
Перестановка порядка интегрирования в том случае, когда оба интеграла несобственные.
В теореме 5 была обоснована перестановка порядка интегрирования, когда внутренний интеграл несобственный, а внешний собственный. Сложнее обосновывать перестановку порядка интегрирования, когда оба интеграла несобственные.
Пусть функция \(f(x, y)\) непрерывна на множестве \(\<(x, y): a \leq x \leq b,\ c \leq y \leq d\>\) и выполнены следующие условия:
Теоремы 4-7 остаются справедливыми и при замене функции \(f(x, y)\) на функцию \(\psi(x)f(x, y)\), где функция \(\psi(x)\) интегрируема по Риману на любом отрезке, лежащем в интервале \((a, b)\).
Если \(f(x, y) = \varphi(x, y)+i\psi(x, y)\) есть комплекснозначная функция, то
$$
|\varphi(x, y)| \leq |f(x, y)|,\ |\psi(x, y)| \leq |f(x, y)|.\nonumber
$$
Все условия теоремы будут выполнены и для функций \(\varphi(x, y)\) и \(\psi(x, y)\), если \(f(x, y)\) удовлетворяет условиям теоремы 7. Поэтому оба повторных интеграла от каждой из этих функций существуют и равны. Следовательно, существуют и равны повторные интегралы от функции \(f(x, y)\).
Вычислить интеграл Эйлера-Пуассона (интеграл вероятностей)
$$
I = \int\limits_<0>^ <+\infty>e^<-t^<2>> dt.\nonumber
$$
Для обоснования законности изменения порядка интегрирования применим теорему 7. Интеграл \(\displaystyle\int\limits_<0>^ <+\infty>ye^<-y^<2>(1+x^<2>)> dx\) сходится равномерно по параметру \(y\) на любом отрезке \([c, d] \subset (0, +\infty)\) по признаку Вейерштрасса, так как \(|ye^<-y^<2>(1+x^<2>)>| \leq de^<-c^<2>(1+x^<2>)>\) а интеграл \(\displaystyle\int\limits_<0>^ <+\infty>de^<-c^<2>(1+x^<2>)> dx\) сходится.
Аналогично доказывается, что интеграл \(\displaystyle\int\limits_<0>^ <+\infty>ye^<-y^<2>(1+x^<2>)> dx\) сходится равномерно по параметру \(x\) на любом отрезке \([a, b] \subset (0, +\infty)\). Повторный интеграл \(\int\limits_<0>^ <+\infty>ye^<-y^<2>(1+x^<2>)> dx\) сходится в силу равенства \eqref
Вычислить интегралы Френеля
$$
J_ <1>= \int\limits_<0>^ <+\infty>\sin x^<2>\ dx,\ J_ <2>= \int\limits_<0>^ <+\infty>\cos x^<2>\ dx.
$$
При написании формул \eqref
Изменение порядка интегрирования при \(k > 0\) обосновывается при помощи теоремы 7, предельный переход при \(k \rightarrow +0\) под знаком интеграла возможен в силу его равномерной сходимости по параметру \(k\) при \(k \in [0, +\infty)\) (признак Вейерштрасса). Интегралы \(\displaystyle\int\limits_<0>^ <+\infty>\frac
Источник
Примеры исследования несобственных интегралов на сходимость
Примеры исследования несобственных интегралов на сходимость
Пример 1 Исследовать на сходимость . Вычислим интеграл по определению:
.
Таким образом, данный интеграл сходится при a>1 и расходится при a£1.
Пример 2 Исследовать на сходимость . Вычислим интеграл по определению:
.
Таким образом, данный интеграл сходится при a 0), а интеграл сходится при m>-1 (пример 2). Аналогично, для интеграла I2 :
Для подынтегральная функции в несобственном интеграле первого рода I2 подберем эквивалентную:
Интеграл I2 является несобственным интегралом первого рода. Подобрать функцию, эквивалентную подынтегральной функции, такую, чтобы она не содержала показательной функции, не удается. Поэтому использовать признак сравнения 2, как в предыдущих примерах, нельзя. Применим первый признак сравнения, для чего используем следующий известный факт:
Пример 6 Исследовать на сходимость .
Проведем замену переменной: t = lnx, и получим
.
Разбиение интеграла на два произведено аналогично примеру 5. Интеграл I1 полностью эквивалентен интегралу I1 из примера 5 и, следовательно, сходится при q 1. Однако, на этом исследование сходимости этого интеграла не закончено, так как использованный признак сходимости дает только достаточные условия сходимости. Поэтому нужно исследование сходимости при 1-p£0.
Рассмотрим случай p=1. Тогда интеграл I2 эквивалентен , который сходится при q>1 (заметим, что в этом случае интеграл I1 расходится) и расходится в противном случае.
При p 0, и, следовательно, начиная с некоторого А>1 выполнено T—QE(1-P)T ³ M=const>0. Тогда для интеграла I2 справедлива оценка
,
Суммируя полученные результаты, получаем что исходный интеграл сходится при q 1, в противном случае интеграл расходится.
Пример 6 Исследовать на абсолютную и условную сходимость .
Разобьем исходный интеграл на два:
.
Сходимость. Интеграл I1 эквивалентен , т. е. сходится при p 0 т. к. первообразная sin(x) ограничена, а функция 1/xp монотонно стремится к нулю при x стремящемся к бесконечности.
Покажем, что при p£0 интеграл расходится. Воспользуемся для этого критерием Коши, а точнее его отрицанием
.
Возьмем в качестве R1и R2 следующие величины: R1=2pk и R2=2pk+p/2, тогда
, при p>0.
Таким образом, интеграл сходится при 0
, т. е. интеграл сходится при p>1.
Для доказательства расходимости при p£1 оценим интеграл снизу
.
Разобьем последний интеграл от разности функций на разность интегралов
.
расходится (пример 1) при p p>0 (см. Сходимость), следовательно интеграл
оценивается снизу расходящимся интегралом, т. е. расходится.
Случай p³1 нас не интересует, т. к. при этих значениях параметра интеграл расходится.
Таким образом, исходный интеграл сходится абсолютно при 0
Источник