при каких значениях переменной имеет смысл рациональное выражение

Алгебра. 8 класс

Целые выражения – это такие выражения, которые состоят из чисел и переменных с помощью действий сложения, вычитания, умножения и деления на число, отличное от нуля.
eqn001

Дробные выражения – это выражения, которые помимо действий сложения, вычитания, умножения и деления на число, отличное от нуля, содержат деление на выражение с переменными.
eqn002

Целые и дробные выражения вместе называют рациональными выражениями.

Дробь – это выражение вида eqn003.

Целое выражение имеет смысл при любых значениях входящих в него переменных, потому что действия для нахождения значения целого выражения, всегда возможны.

Дробное выражение при некоторых значениях переменной может не иметь смысла.

    eqn004не имеет смысла при x = 0.
    eqn005не имеет смысла при x = y.

Дробные выражения имеют смысл при любых значениях входящих в них переменных, кроме тех, что обращают знаменатель в нуль.

Значения переменных, при которых выражение имеет смысл, называют допустимыми значениями.

Рациональная дробь – это дробь, числитель и знаменатель которой многочлены.

Примеры
eqn006

В рациональной дроби допустимыми являются те значения переменных, при которых не обращается в нуль знаменатель дроби.

Чтобы найти допустимые значения переменных в дроби, необходимо:

    • Приравнять знаменатель, содержащий переменные, к нулю.
    • Решить полученное уравнение. Корни этого уравнения будут являться теми значениями переменных, которые обращают знаменатель в нуль.
    • Исключить эти значения из всех действительных чисел.

Пример 1.
Найти допустимые значения переменной в дроби eqn007.

1) x(x + 1) = 0
2) x = 0 или x + 1 = 0
x = 0 или x = –1.
Корни уравнения 0 и – 1.
3) Допустимыми значениями x являются все числа, кроме 0 и –1.

Пример 2.
Найти значения x, при которых дробь eqn008равна нулю.

eqn009, когда x 2 – 1 = 0 и x + 1 ≠ 0.
1) x 2 – 1 = 0
2) (x – 1)(x + 1) = 0
x = ±1
3) x + 1 ≠ 0
x ≠ –1.
eqn010при x = 1.

Алгебра. 8 класс: учеб. для общеобразоват. организаций / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. – 6-е изд. – М.: Просвещение, 2017.

Источник

Алгебра 8 класс Мерзляк Упражнения 1-26

Алгебра 8 класс УМК Мерзляк. Упражнения №№ 1 — 26 из учебника с ответами и решениями. Глава 1. Рациональные выражения. § 1. Рациональные дроби. Алгебра 8 Мерзляк Упражнения 1-26 + ОТВЕТЫ.

Нажмите на спойлер, чтобы посмотреть ответ на задание.

Алгебра 8 класс Мерзляк
§ 1. Упражнения №№ 1 — 26:

a8m0001

Задание № 2. Чему равно значение дроби (c 2 – 4c)/(2c + 1), если: 1) с = –3; 2) с = 0?

a8m0002

Задание № 3. Найдите значение выражения (2m – n)/(3m + 2n), если: 1) m = –1, n = 1; 2) m = 4, n = –5.

a8m0003

Задание № 4. Чему равно значение выражения: 1) (a 2 – 1)/(a – 5) при а = –4; 2) (х + 3)/у – у/(х + 2) при х = –5, у = 6?

a8m0004

Задание № 5. Найдите допустимые значения переменной, входящей в выражение: 2021 08 30 11 20 08

a8m0005

Задание № 6. При каких значениях переменной имеет смысл выражение: 2021 08 30 11 20 15

a8m0006

Задание № 7. Запишите рациональную дробь, которая содержит переменную х и имеет смысл при всех значениях х, кроме: 1) х = 7; 2) х = –1; 3) х = 0 и х = 4.

a8m0007

Задание № 8. Запишите рациональную дробь, содержащую переменную у, допустимыми значениями которой являются:
1) все числа, кроме 5; 3) все числа, кроме 3, –3 и 6;
2) все числа, кроме –2 и 0; 4) все числа.

a8m0008

Задание № 9. Автомобиль проехал по шоссе а км со скоростью 75 км/ч и по грунтовой дороге b км со скоростью 40 км/ч. За какое время автомобиль проехал весь путь? Составьте выражение и найдите его значение при а = 150, b = 20.

a8m0009

Задание № 10. Ученик купил тетради по 8 р., заплатив за них m р., и по 14 р., заплатив за них n р. Сколько тетрадей купил ученик? Составьте выражение и найдите его значение при m = 24, n = 56.

a8m0010

Задание № 11. Докажите, что при всех допустимых значениях переменной х значение дроби: 1) 1/x 2 положительное; 2) (x 2 + 1)/(6x – 9 – x 2 ) отрицательное.

Источник

При каких значениях переменной имеет смысл рациональное выражение

В курсе алгебры 7 класса мы занимались преобразованиями целых выражений, т. е. выражений, составленных из чисел и переменных с помощью действий сложения, вычитания и умножения, а также деления на число, отличное от нуля. Так, целыми являются выражения

В отличие от них выражения

помимо действий сложения, вычитания и умножения, содержат деление на выражение с переменными. Такие выражения называют дробными выражениями.

Целые и дробные выражения называют рациональными выражениями.

Целое выражение имеет смысл при любых значениях входящих в него переменных, так как для нахождения значения целого выражения нужно выполнить действия, которые всегда возможны.

Дробное выражение при некоторых значениях переменных может не иметь смысла. Например, выражение не имеет смысла

при а = 0. При всех остальных значениях а это выражение имеет

смысл. Выражение имеет смысл при тех значениях х и у, x ≠ y.

Значения переменных, при которых выражение имеет смысл, называют допустимыми значениями переменных.

Выражение вида называется, как известно, дробью.

Дробь, числитель и знаменатель которой многочлены, называют рациональной дробью.

Примерами рациональных дробей служат дроби

В рациональной дроби допустимыми являются те значения переменных, при которых не обращается в нуль знаменатель дроби.

Пример 1. Найдем допустимые значения переменной в дроби

Это уравнение имеет два корня: 0 и 9. Следовательно, допустимыми значениями переменной а являются все числа, кроме 0 и 9.

Дробь равна нулю тогда и только тогда, когда a = 0 и b ≠ 0.

2. Основное свойство дроби. Сокращение дробей

Мы знаем, что для обыкновенных дробей выполняется следующее свойство: если числитель и знаменатель дроби умножить на одно и то же натуральное число, то значение дроби не изменится. Иначе говоря, при любых натуральных значениях а, b и с верно paвенство

Докажем, что это равенство верно не только при натуральных, но и при любых других значениях а, b и с, при которых знаменатель отличен от нуля, т. е. при b ≠ О и с ≠ О.

Пусть Тогда по определению частного а = bm. Умножим обе части этого равенства на с :

На основании сочетательного и переместительного свойств умножения имеем:

Так как bс ≠ 0, то по определению частного

Мы показали, что для любых числовых значений переменных b и с, где b ≠ О и с ≠ 0, верно равенство

Равенство (1) сохраняет силу и в том случае, когда под буквами а, b и с понимают многочлены, причем b и сненулевые многочлены, т. е. многочлены, не равные тождественно нулю.

Равенство (1) выражает основное свойство рациональной дроби:

если числитель и знаменатель рациональной дроби умножить на один и тот же ненулевой многочлен, то получится равная ей дробь.

Это равенство верно при всех допустимых значениях переменных. Такие равенства будем называть тождествами. Ранее тождествами мы называли равенства, верные при всех значениях переменных. Теперь мы расширяем понятие тождества.

Определение. Тождеством называется равенство, верное при всех допустимых значениях входящих в него переменных.

Основное свойство рациональной дроби позволяет выполнять приведение дроби к новому знаменателю и сокращение дробей. Приведем примеры.

Пример 1. Приведем дробь к знаменателю

Множитель называют дополнительным множителем к числителю и знаменателю дроби

Пример 2. Приведем дробь к знаменателю

Для этого числитель и знаменатель данной дроби умножим на -1:

если изменить знак числителя (или знак знаменателя) дроби и знак перед дробью, то получим выражение, тождественно равное данному.

Пример 3. Сократим дробь

Разложим числитель и знаменатель дроби на множители:

Сократим полученную дробь на общий множитель a + 3:

Пример 4. Построим график функции

Графиком функции является прямая, а графиком функции но с «выколотой» точкой (4 ; 4) (рис. 1.)

Источник

Алгебра. 8 класс

Распределите выражения на две группы.

Перед вами рациональные выражения.
Какие из них являются целыми выражениями, а какие – дробными?

Целые выражения

Дробные выражения

eqn005

eqn008

eqn004

eqn006

eqn003

eqn007

Впишите верный ответ.

Найдите значение дроби eqn009при eqn080.

Укажите правильный ответ.

У какой дроби числитель – произведение числа 3 и y, а знаменатель – разность x и y?

eqn013 eqn012 eqn015 eqn014

Укажите правильный ответ.

При каких значениях переменной имеет смысл рациональное выражение eqn024?

при любых значениях переменной

при любых значениях переменной, кроме x = ±1

при любых значениях переменной, кроме x = 1

при любых значениях переменной, кроме x = –1

Источник

Алгебра

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Понятие рационального выражения

В 5 и 6 классе мы уже изучали дроби и действия над ними. В 7 классе рассматривались рациональные числа, которые, по сути, и являются дробями. Однако до этого мы изучали только так называемые числовые дроби, у которых в числителе и знаменателе стоят какие-то числа либо выражения с числами, но не переменные величины.

Следующие дроби являются числовыми:

Однако нередко в алгебре приходится иметь дело и с дробями, которые содержат переменные. В качестве примера подобных выражений можно привести:

Так как деление на ноль является недопустимой операцией в алгебре, то некоторые дроби могут не иметь смысла. Так, дробь

бессмысленна, так как ее знаменатель 21 – 3•7 равен нулю.

Если дробь содержит переменные величины, то ее значение зависит от этих переменных. Так, дробь

при у = 4 принимает значение, равное 9. Если же у = 3, то эта дробь окажется бессмысленной.

Значения переменных величин, при которых дробь сохраняет свой смысл, называют допустимыми значениями переменных.

Пример. Укажите множество допустимых значений величин х и у для дроби

Решение. Недопустим только случай, при котором в знаменателе находится ноль, то есть когда выполняется равенство

или равносильное ему равенство

Следовательно, допустимыми значениями являются все такие пары (х; у), что х ≠ у.

Пример. Каковы допустимые значения величин а и b в дроби

Решение. В данной записи есть три дробных черты, а значит, и три знаменателя:

Ни один из знаменателей не должен равняться нулю, поэтому

Перенесем в последнем неравенстве 2-ое слагаемое вправо, изменив знак (правила преобразований выражений со знаком ≠ точно такие же, как и у равенств):

По свойству пропорции имеем:

Итак, допустимыми являются все значения a и b, при которых а ≠ 0, b≠ 0, a≠b.

Пример. Найдите множество допустимых значений х для дроби

Ясно, что знаменатель должен отличаться от нуля:

Чтобы найти, при каких значениях неизвестной величины знаменатель обращается в ноль, надо решить уравнение

Представим полином в левой части как произведение, применив формулу квадрата разности:

Получаем, что исходная дробь сохраняет смысл при любых х, отличных от – 5 и 5.

Порою дроби, содержащие переменные, могут встречаться в тождествах.

Пример. Докажите тождество

Решение. У дроби в левой части знаменатель всегда положителен, поэтому все допустимыми являются все значения c. Согласно свойству операции деления, делимое равно произведению делителя и частного, поэтому для доказательства тождества надо лишь показать справедливость равенства

(с 3 – 2с 2 + с – 2) = (с – 2)(с 2 + 1)

Раскроем скобки в правой части:

(с – 2)(с 2 + 1) = с 3 – 2с 2 + с – 2

Получили одинаковое выражение и для левой, и для правой части тождества, следовательно, оно верное.

Теперь сформулируем понятие рационального выражения.

Среди рациональных выражений выделяют целые и дробные выражения.

Приведем примеры целых рациональных выражений:

А вот несколько примеров дробных рациональных выражений:

Стоит заметить, что дробь и дробное выражение – это два разных понятия. Для иллюстрации приведем два примера:

Отдельно отметим, что дробь равна нулю тогда, когда ее числитель равен нулю, а знаменатель нет. Если же и знаменатель равен нулю, то получается недопустимое действие – деление на ноль, поэтому дробь не будет иметь смысла.

Пример. Найдите все корни уравнения

Решение. На первый взгляд уравнение кажется сложным, особенно из-за знаменателя. Однако он здесь почти не играет роли. В левой части находится дробь, значит, нулю равен ее знаменатель:

х – 1 = 0 или х + 2 = 0

Получили два корня. Осталось убедиться, что при этих значениях х дробь не становится бессмысленной, то есть ее знаменатель не обращается в ноль. При х = 1 имеем знаменатель

2•1 4 – 3•1 3 + 5•1 – 4 = 2 – 3 + 5 – 4 = 0

поэтому число 1 НЕ является корнем уравнения. Теперь проверим знаменатель при х = – 2:

2•(– 2) 4 – 3•( – 2) 3 + 5•( – 2) – 4 =

Получается, что единственное корень уравнения – это ( – 2).

Сокращение рациональных выражений

Узнав, какие выражения являются рациональными, мы приступим к изучению их преобразований. Напомним главное свойство дроби:

Оно означает, что числитель и знаменатель можно умножить на произвольное число (кроме нуля), то значение дроби останется прежним:

Это правило остается верным и в том случае, когда вместо чисел используются переменные величины.

Например, возможны такие преобразования рациональных выражений:

Например, пусть надо привести дробь

6а 2 b 2 = 2а 2 b•3b

Поэтому выражения над и под дробной чертой надо умножить на 3b:

Использованный нами множитель 3b называют дополнительным множителем.

Обратная операция, при которой из знаменателя и числителя убирают совпадающие множители, называется сокращением дроби:

Это тождество означает, что дроби можно сокращать, убирая общий множитель, например:

Аналогичные действия можно совершать не только с числовыми дробями, но и с дробными выражениями:

В последнем примере мы вынесли общие множители за скобки (2х и 7у), чтобы над и под чертой появилась одинаковая сумма х + 3у, которую можно сократить.

Однако при сокращении дробей важно учитывать область ее допустимых значений, ведь из-за изменения знаменателя она может измениться. Например, пусть требуется построить график функции

В числителе стоит разность квадратов, которую можно разложить на множители:

Казалось бы, мы получили линейную функцию

чей график нам известен – это прямая. Но она определена при всех возможных х, в то время как исходная дробь бессмысленна при х = 2, ведь тогда знаменатель становится равен нулю. Поэтому график функции будет выглядеть как прямая, однако одна из ее точек, с координатами (2; 4), будет «выколотой» точкой, и исключенной:

Данный рисунок означает, что графиком функции – прямая линия, кроме точки (2; 4)

Выколотая точка на графике изображается маленьким незакрашенным кружочком.

Следующее важное свойство дроби связано со знаком минус. Знак, стоящий перед дробью, можно перенести либо в знаменатель, либо в числитель:

Также напомним, что можно поменять местами уменьшаемое и вычитаемое в скобках, если изменить перед ней знак:

Применение этих правил позволяет упрощать некоторые дроби, например:

Более сложный пример:

Рассмотрим такое понятие, как однородный многочлен. Так называют тот полином, у которого все одночлены имеют одинаковую степень.

Подробнее о степени одночлена можно узнать в этом уроке. Если коротко, то степень одночлена – эта сумма степеней у всех переменных, входящих в его буквенную часть. Например, у следующих мономов степень равна 4:

В отношении однородных полиномов, состоящих из двух переменных, можно применять особый прием. Достаточно поделить его на одну из переменных в степени полинома, и получится выражение, зависящее только от одной дроби. Поясним это на примере. Пусть надо вычислить значение отношения

если известно другое отношение:

В исходной дроби представляет собой отношение двух однородных полиномов третьей степени. Поэтому поделим их на y 3 (можно было делить и на х 3 ). При этом значение дроби не изменится, ведь мы делим числитель и знаменатель на одинаковый моном:

Получили выражение, которое зависит только от отношения

Попытаемся найти эту величину из условия

Отсюда следует, что

Теперь подставим найденное отношение в формулу(1):

До этого мы рассматривали примеры дробных выражений, состоящие из полиномов с целыми коэффициентами. Если же используются дробные числа, то от них всегда можно избавиться, домножив дробь на какое-нибудь число.

Например, дана дробь

Коэффициенты при у и у 2 дробные. Избавимся от них. Для этого используем дополнительный множитель 12:

Далее рассмотрим сложение и вычитание дробных выражений. Проще всего эту операцию проводить в том случае, когда у дробей совпадают знаменатели. В такой ситуации используются уже нам известные правила:

Сложим две величины:

В их знаменателе стоит одинаковый полином, а потому операция будет выглядеть так:

Здесь мы в числителе использовали формулу квадрата разности.

Теперь вычтем из выражения

У них совпадают знаменатели, поэтому проблем с вычитанием не возникает:

Заметим, что обычно у дробных выражения стараются сокращать до тех пор, пока не получится несократимая дробь.

Если у дробей различные знаменатели, то приводят к общему знаменателю, домножая их на какой-нибудь дополнительный множитель.

Рассмотрим следующий пример:

Есть и более простой способ найти общий знаменатель, для этого достаточно просто перемножить знаменатели дробей-слагаемых. Однако дальнейшие преобразования будут более долгими. Решим таким путем тот же пример:

В числителе возможно вынесение общего множителя 2ху за скобки:

Видно, что конечный результат операции не изменился.

Если в знаменателях складываемых дробей стоят многочлены, то стоит попробовать разложить их на множители. За счет этого порою удается найти более простой общий знаменатель.

Пусть надо сложить выражения

Вынесем в знаменателях за скобки множители х и у:

В знаменателях есть похожие множители, (3х – у) и (у – 3х). Чтобы они оказались одинаковыми, надо поменять местами вычитаемое и уменьшаемое в одних скобках. Для этого перед ними надо добавить знак «минус»:

Общим множителем этих дробей является произведение ху(3х – у):

Осталось разложить числитель, где стоит разность квадратов:

Следующий важный навык, который может потребоваться при работе с рациональными выражениями – это выделение целой части из дроби.

Продемонстрируем эту операцию на примере

Перепишем дробь, поменяв порядок слагаемых в числителе:

И в знаменателе, и в числителе есть сумма х 2 + 1. Теперь можно произвести выделение целой части:

В справедливости данного преобразования можно убедиться, выполнив его «в обратную сторону»:

Любой многочлен можно сделать дробью, если приписать ему числитель, равный 1. Пусть надо упростить формулу

Заменим 2х – 1 на дробь и произведем вычитание:

Упростить далее эту дробь довольно сложно, но всё же возможно. Для этого надо заменить одночлен (– 3х 2 ) на разность (– х 2 – 2х 2 ), а 14х на сумму (6х+8х). Посмотрим, что получится в результате:

Складывать можно и более двух дробей. Пусть надо упростить сумму

Будем складывать слагаемые последовательно, то есть сначала сложим два первых слагаемых, потом к результату добавим третье, а далее и 4-ое слагаемое:

Представление дроби в виде суммы дробей

Сумму двух дробей можно представить в виде несократимой дроби единственным образом, например:

Однако у обратной задачи, разложения одной дроби на сумму нескольких других, есть бесконечной множество решений:

То же самое верно в отношении дробных выражений. Например,

можно разложить так:

С другой стороны, это же выражение можно представить в следующем виде:

Для раскладывания дроби на сумму дробей можно воспользоваться методом неопределенных коэффициентов, предложенным Рене Декартом в 1637 году. Покажем, как его использовать, на примере. Пусть надо представить в виде суммы двух дробей отношение

Заметим, что знаменатель х 2 – 4 можно записать как произведение полиномов первой степени (х – 2)(х + 2):

Это означает, что исходное выражение можно представить как сумму дробей со знаменателями (х – 2) и (х + 2). Обозначим числители в этих дробях как неизвестные величины aи b (они и носят название неопределенных коэффициентов). Тогда можно записать, что

Задача сводится к тому, чтобы найти a и b. Для этого преобразуем сумму дробей:

Полученная дробь должна равняться исходной дроби:

У правой и левой части равны знаменатели, а значит, должны равняться и числители:

(a + b)x + (2a– 2b) = 2x + 6

Это тождество может быть верным только тогда, когда справа и слева равны коэффициенты перед переменной х, а также свободные члены, поэтому можно записать систему:

Решив эту систему, мы сможем найти значения a и b. Используем метод подстановки, выразив а из первого уравнения:

Подставим эту формулу во второе уравнение:

а = 2 – b = 2 – (– 2,5) = 2 + 2,5 = 4,5

Итак, получили, что a = 4,5 и b = – 2,5. Это значит, исходную дробь можно разложить следующим образом:

Теперь рассмотрим, как производится умножение и деление дробных выражений. Эти действия аналогичны операциям с обычными числами, которые уже изучались в 5 классе. Напомним две основные формулы:

Пусть требуется перемножить величины

Эта операция осуществляется так:

Теперь посмотрим, как выполняется деление:

Деление заменяется умножением на дробь, обратную делителю:

Для упрощения выражений часто используют формулы сокращенного умножения:

При возведении дроби в степень надо отдельно возводить в степени знаменатель и числитель:

Вообще для любого натурального числа nбудет верным тождество:

Пусть надо возвести в 4-ую степень дробь

Выглядеть это будет так:

Преобразование рациональных выражений

Если у дроби в знаменателе и числителе записаны полиномы, то ее называют рациональной дробью. В виде рациональной дроби можно записать любое рациональное выражение.

Пусть надо записать в виде рациональной дроби выражение

Сначала выполним вычитание в скобках, а потом и деление:

Обратим внимание, что выражение

представляет собой не что иное, как разность квадратов, для которой можно применить формулу сокращенного умножения:

(2а + 1) 2 – (2а – 1) 2 = (2а + 1 + 2а – 1)( 2а + 1 – (2а – 1)) =

= (2а + 1 + 2а – 1)( 2а + 1 – 2а + 1).

Используя это, продолжим работать с дробью:

Однако иногда удобнее не производить вычисления в скобках, а использовать распределительный закон умножения:

Пусть требуется упростить произведение:

Сначала раскроем скобки:

Часто проблемы возникают с так называемыми «многоэтажными» дробями. Так называют дроби, у которых в числителе и знаменателе стоят другие дробные выражения. Выглядят они внушительно, однако правила работы с ними такие же, как и с другими выражениями. Каждая дробная черта просто означает операцию деления.

Пусть требуется выполнить преобразование дробного рационального выражения

Сначала представим эту дробь как операцию деления:

Теперь в каждой из скобок произведем сложение:

Источник

admin
Производства
Adblock
detector