Квадратные уравнения с параметром
Исследование квадратного многочлена
Чтобы решить квадратное уравнение с параметром, нужно понять, при каких значениях параметра существуют корни, и найти их, выразив через параметр. Обычно это делается просто через анализ дискриминанта. (см. пример 1) Но иногда в задачах с параметром просят найти такие значения параметра, при которых корни принадлежат определенному числовому промежутку. Например:
если \(a*f(γ) 0\), то \(γ∉(x_1,x_2)\).
Нам осталось наложить условие, чтобы наши корни были слева от числа \(γ\). Здесь нужно просто сравнить положение вершины нашей параболы \(x_0\) относительно \(γ\). Заметим, что вершина лежит между точками \(x_1\) и \(x_2\). Если \(x_0 0, \\x_0
1 случай: Если \(a(a+3)=0\), то уравнение будет линейным. При \(a=0\) исходное уравнение превращается в \(6x-9=0\), корень которого \(x=1,5\). Таким образом, при \(a=0\) уравнение имеет один корень.
При \(a=-3\) получаем \(0*x^2+0*x-0=0\), корнями этого уравнения являются любые рациональные числа. Уравнение имеет бесконечное количество корней.
1 случай: Если \(a=-1\), то \(0*x^2-x+1-1=0\) отсюда \(x=0\). Это решение принадлежит \([-2;2]\).
2 случай: При \(a≠-1\), получаем квадратное уравнение, с условием, что все корни принадлежат \([-2;2]\). Для решения введем функцию \(f(x)=(a+1) x^2-(a^2+2a)x-a-1\) и запишем систему, которая задает требуемые условия:
Подставляем полученные выражения в систему:
Источник
Параметр в квадратном уравнении
Ищем педагогов в команду «Инфоурок»
Решение квадратных уравнений с параметрами
Научиться решать любые задачи с параметрами, используя какой-то алгоритм или формулы, нельзя. Надо использовать соображения, рассматривать их как задачи исследовательские.
Выражение b 2 – 4ас называют дискриминантом квадратного уравнения.
Если D = 0, то квадратное уравнение имеет единственный действительный корень (или говорят, что это уравнение имеет два кратных корня
).
Если D > 0, то квадратное уравнение имеет два различных действительных корня .
а ≠ 0, то сумма корней равна , а их произведение равно
.
Обратное утверждение: Если числа х 1 , х 2 таковы, что
,
, то эти числа – корни уравнения ах 2 + bх + с = 0, а ≠ 0 .
Значения параметра, при которых или при переходе через которые происходит качественное изменение уравнения, можно назвать контрольными или особыми. Очень важно уметь находить их.
При решении квадратного уравнения с параметрами контрольными будут те значения параметра, при которых коэффициент при х 2 обращается в нуль.
Если этот коэффициент равен нулю, то уравнение превращается в линейное;
если же этот коэффициент отличен от нуля, то имеем квадратное уравнение (в этом и состоит качественное изменение уравнения).
Понятие квадратного трехчлена и его свойства.
Квадратным трехчленом называется выражение вида ax ²+ bx + c , где a ≠0. Графиком соответствующей квадратичной функции является парабола.
При a a >0 ветви направлены вверх.
Выражение x ²+ px + q называется приведенным квадратным трехчленом.
В зависимости от величины дискриминанта D = b ²- 4 ac возможны следующие случаи расположения графика квадратного трехчлена:
при D >0 существуют две различные точки пересечения параболы с осью Ох (два различных корня трехчлена);
при D =0 эти две точки сливаются в одну, то есть парабола касается оси Ох (один корень трехчлена);
В последнем случае при а>0 парабола лежит целиком выше оси Ох,
«Белое пятнышко» в теме «Квадратный трёхчлен и квадратичная функция» может привести к появлению «мёртвых зон» и провалов в наших знаниях элементарной математики. Кстати, преподаватели мехмата МГУ О. Черкасова и А. Якушева утверждают: « Во многих так называемых задачах повышенной сложности «торчат уши квадратного трехчлена».
. Расположение параболы по отношению к оси абсцисс
в зависимости от коэффициента а и дискриминанта.
Теоремы о знаках корней квадратного трехчлена.
Теорема 1. Для того, чтобы корни квадратного трехчлена имели одинаковые знаки, необходимо и достаточно выполнения соотношений:
Теорема 2. Для того, чтобы корни квадратного трехчлена имели разные знаки, необходимо и достаточно выполнения соотношения x 1• x 2= c / a
В данном случае нет необходимости проверять знак дискриминанта, поскольку при выполнении условия c / a c • a D = b ²-4 ac >0.
Расположение корней квадратного трехчлена
Рассмотрим теперь особенности расположения корней квадратного трехчлена с заданными свойствами на координатной плоскости.
Решение задач, для которых характерны следующие формулировки : при каких значениях параметра корни ( только один корень) больше (меньше, не больше, не меньше) заданного числа р; корни расположены между числами p и q и т.д.; опирается на утверждения о расположении корней квадратичной функции.
При решении многих задач требуется знание следующих теорем и следствий.
Пусть f(х) = ах 2 + bx + с имеет действительные корни х1, х2 (которые могут быть кратными), а М, N – какие-нибудь действительные числа, причем М
Теорема 1. Для того чтобы оба корня квадратного трехчлена были меньше, чем число М (то есть лежали на числовой оси левее, чем точка М), необходимо и достаточно выполнение следующих условий:
или
Теорема 2. Для того чтобы один из корней квадратного трехчлена был меньше, чем число М, а другой больше, чем М (то есть точка М лежала бы между корнями), необходимо и достаточно выполнение следующих условий:
или
Эти две системы можно заменить формулой .
Теорема 3. Для того чтобы оба корня квадратного трехчлена были больше, чем число М (то есть лежали на числовой оси правее, чем точка М), необходимо и достаточно выполнение следующих условий:
или
или
Следствие 2. Для того чтобы больший корень квадратного трехчлена лежал в интервале между М и N, необходимо и достаточно выполнение следующих условий:
или
Следствие 3. Для того чтобы только меньший корень квадратного трехчлена лежал в интервале между М и N, необходимо и достаточно выполнение следующих условий:
или
Следствие 4. Для того чтобы один из корней квадратного трехчлена был меньше, чем число М, но меньше, а другой больше, чем число N (то есть отрезок МN лежал внутри интервала между корнями), необходимо и достаточно выполнение следующих условий:
или
Акцентировать внимание надо на то, что здесь контрольными являются: направление ветвей параболы, знаки значений f(M), f(N), расположение вершины параболы..
Задача 1. При каких значениях параметра а уравнение х 2 +2∙(а+1)х+9=0 имеет два различных положительных корня?
Решение. Так как по условию корни различны, то D >0. Воспользуемся теоремой 1(о знаках корней квадратного трехчлена). Составим систему :
Задача 2. При каких значениях параметра а уравнение х 2 -4х + (4-а 2 )=0
имеет два корня разных знаков?
Решение. Воспользуемся теоремой 2 ( о знаках корней квадратного трехчлена). Запишем условие:
Задача 3. При каких значениях параметра а уравнение х 2 – 2ах + а 2 – а- 6 =0 имеет два разных отрицательных корня?
Решение. Воспользуемся теоремой 1 (о расположении корней квадратного трехчлена) и запишем систему :
Задача 4. При каких значениях параметра а число 2 находится между корнями квадратного уравнения х 2 + (4а+5)∙х + 3-2а =0.
Решение. Пусть х1 и х2 корни квадратного трехчлена, причем х1
D= 16a 2 +48 a +13 >0,
F (2)= 2 2 + (4 a +5)∙2 +3- 2 a
Задача 5. При каких значениях параметра а корни уравнения
Следствием 1 и составим систему :
Теорема Виета и задачи с параметрами.
Решение. Найдем дискриминант . Уравнение имеет два корня при любом a. Используя теорему Виета, найдем
+
=(
+
)²-2
=(3 a )²-2 a ²
Задача7 . При каком значении m сумма квадратов корней уравнения
-расстояние между корнями, и оно, по условию, должно быть наибольшим.
Уравнение запишем в виде: -6 x +12=- a ²+4 a
и решим его графически.
= 3, y в =3
-прямая, параллельная оси ОХ.
Графиком является парабола, ветви которой направлены вниз.
Функция достигает наибольшего значения при =2.
.
Графический способ определения числа корней уравнения с параметром.
Рациональность любого верного решения опирается на условия задачи и напрямую зависит от них. Иногда графический метод помогает быстрее и удобнее решить задачу.
Остановимся на нахождении числа решений уравнений с параметрами, в которых под знаком модуля находится квадратный трёхчлен.
Задача 9. Найдите число решений уравнения
.
Выделим полный квадрат:
Уравнение = a имеет столько решений, сколько
раз прямая у = а пересекает график функции
если , то графики не имеют общих точек, т.е. нет решения;
если , то графики имеют три общие точки , т.е. три решения;
у
y = a (
4 y = a (
y = a (
х
y = a (
y = a (
Задача 10 . Для каждого значения параметра а определите число решений
уравнения .
Решение: Здесь в отличие от предыдущего уравнения параметр а входит в выражение, как стоящее под знаком модуля, так и находящееся вне его. Преобразуем левую часть данного уравнения:
.
Строим схематически график левой части данного уравнения с учётом того, что дискриминант квадратного трёхчлена всегда положителен:
.
Проводим горизонтальные прямые – графики функции у = а + 3
При различных значениях параметра а.
Если , т.е.
, то графики
и
не пересекаются, и значит, нет решений.
-уравнение имеет два решения.
а уравнение – четыре решения.
Найдём, при каких значениях а уравнение будет иметь четыре решения. Для этого решим двойное неравенство
, или
y = a +3
y = a +3 (
y = a + 3 (
х
Графический метод не дает в большинстве случаев точного решения уравнения, однако, часто оказывается более эффективным, чем аналитический, т.к. он может быть полезен для наглядной иллюстрации
Источник