При каких значениях а прямая касается кривой
Найдите все значения параметра при каждом из которых система
имеет ровно решений.
Преобразуем систему, получим:
Первое уравнение задает части двух парабол (см. рисунок):
Второе уравнение задает окружность радиусом с центром
На рисунке видно, что шесть решений системы получаются, только если окружность проходит через точки
и
пересекая параболу еще в четырех точках.
При этом радиус окружности равен откуда
или
Ответ:
Найдите все значения a, при каждом из которых система
имеет ровно два различных решения.
Решим первое уравнение:
Рассмотрим случай (1): y = −7. При любом a получаем одно решение x = a + 7, для которого неравенство x ≥ −3 верно только при a ≥ −10.
Рассмотрим случай (2):
Так как то при
корней нет, при
получаем один корень
при
получаем два различных корня. У параболы
— ветви вверх, абсцисса вершины равна
Соберем сведения о числе решений в случаях (1) и (2) в таблице
Остаётся учесть те значения a, при которых решение из случая (1) совпадает с одним из решений случая (2). Тогда с учётом
из
получаем, что x = 4, a = −3.
Ответ:
Примечание: для решения задачи можно использовать графо-аналитический метод.
Можете объяснить, как мы из yx^2+y^2-2y-63+7x^2=0 получили (y+7)(y+x^2-9)=0 Всё никак не удаётся преобразовать к такому виду.
Найдите все значения a, при каждом из которых система уравнений
имеет ровно два различных решения.
Графическое решение. Запишем первое уравнение системы в виде
При левая часть не имеет смысла. При
уравнение задаёт прямую
и гиперболу
(см. рис.). При каждом значении a уравнение
задаёт прямую с угловым коэффициентом a, проходящую через начало координат.
Число решений исходной системы равно числу точек пересечения прямой и гиперболы
с прямой
при условии
Прямая пересекает прямую
при
и при
пересекает правую ветвь гиперболы при
пересекает левую ветвь гиперболы при
проходит через точку пересечения прямой
и гиперболы при
Таким образом, исходная система имеет ровно два решения при и при
Аналитическое решение. Запишем первое уравнение системы в виде
Тогда исходная система равносильна следующей:
При a = 0 система решений не имеет. В противном случае, первое уравнение имеет корень который удовлетворяет системе при
Второе уравнение имеет два различных корня
только при a > 0, причем, x2 является корнем системы при любом положительном a, а x3 при
Таким образом система будет иметь два различных решения при
Кроме того, положительные корни x1 и x2 могут совпасть
это происходит при a = 1.
Ответ:
Полезно сравнить это задание с аналогичной задачей досрочного ЕГЭ 2015 года: найдите все значения параметра a, при каждом из которых система уравнений
имеет единственное решение.
Найдите все значения a, при каждом из которых система уравнений
имеет ровно два различных решения.
Графическое решение. Запишем первое уравнение системы в виде
При левая часть не имеет смысла. При
уравнение задаёт прямую
и гиперболу
(см. рис.). При каждом значении a уравнение
задаёт прямую с угловым коэффициентом a, проходящую через начало координат.
При такая прямая пересекает прямую
при
и
пересекает правую ветвь гиперболы
при
пересекает левую ветвь гиперболы
при
При этом прямая
проходит через точку пересечения прямой
и гиперболы
при
Число решений исходной системы равно числу точек пересечения прямой и гиперболы
с прямой
при условии
Таким образом, исходная система имеет ровно два решения при и при
Аналитическое решение. Запишем первое уравнение системы в виде
Тогда исходная система равносильна следующей:
При a = 0 система решений не имеет. В противном случае, первое уравнение имеет корень который удовлетворяет системе при
Второе уравнение имеет два различных корня
только при a > 0, причем, x2 является корнем системы при любом положительном a, а x3 при
Таким образом система будет иметь два различных решения при
Кроме того, положительные корни x1 и x2 могут совпасть
это происходит при a = 3.
Ответ:
Полезно сравнить это задание с аналогичной задачей досрочного ЕГЭ 2015 года: найдите все значения параметра a, при каждом из которых система уравнений
имеет единственное решение.
Аналоги к заданию № 513610: 513629 514510 514517 Все
Источник
Задачи для самостоятельного решения
1. Напишите уравнения касательных, проведенных к графику функции y = 2x 2 – 4x + 3 в точках пересечения графика с прямой y = x + 3.
Ответ: y = – 4x + 3, y = 6x – 9,5.
2. При каких значениях a касательная, проведенная к графику функции y = x 2 – ax в точке графика с абсциссой x0 = 1, проходит через точку M(2; 3)?
3. При каких значениях p прямая y = px – 5 касается кривой y = 3x 2 – 4x – 2?
4. Найдите все общие точки графика функции y = 3x – x 3 и касательной, проведенной к этому графику через точку P(0; 16).
Ответ: A(2; – 2), B(– 4; 52).
5. Найдите кратчайшее расстояние между параболой y = x 2 + 6x + 10 и прямой
Ответ:
6. На кривой y = x 2 – x + 1 найдите точку, в которой касательная к графику параллельна прямой y – 3x + 1 = 0.
7. Напишите уравнение касательной к графику функции y = x 2 + 2x – | 4x |, которая касается его в двух точках. Сделайте чертеж.
8. Докажите, что прямая y = 2x – 1 не пересекает кривую y = x 4 + 3x 2 + 2x. Найдите расстояние между их ближайшими точками.
Ответ:
9. На параболе y = x 2 взяты две точки с абсциссами x1 = 1, x2 = 3. Через эти точки проведена секущая. В какой точке параболы касательная к ней будет параллельна проведенной секущей? Напишите уравнения секущей и касательной.
Ответ: y = 4x – 3 – уравнение секущей; y = 4x – 4 – уравнение касательной.
10. Найдите угол q между касательными к графику функции y = x 3 – 4x 2 + 3x + 1, проведенными в точках с абсциссами 0 и 1.
11. В каких точках касательная к графику функции образует с осью Ox угол в 135°?
12. В точке A(1; 8) к кривой проведена касательная. Найдите длину отрезка касательной, заключенного между осями координат.
Ответ:
13. Напишите уравнение всех общих касательных к графикам функций y = x 2 – x + 1 и y = 2x 2 – x + 0,5.
Ответ: y = – 3x и y = x.
14. Найдите расстояние между касательными к графику функции параллельными оси абсцисс.
Ответ:
15. Определите, под какими углами парабола y = x 2 + 2x – 8 пересекает ось абсцисс.
Ответ: q1 = arctg 6, q2 = arctg (– 6).
16. На графике функции найдите все точки, касательная в каждой из которых к этому графику пересекает положительные полуоси координат, отсекая от них равные отрезки.
17. Прямая y = 2x + 7 и парабола y = x 2 – 1 пересекаются в точках M и N. Найдите точку K пересечения прямых, касающихся параболы в точках M и N.
18. При каких значениях b прямая y = 9x + b является касательной к графику функции y = x 3 – 3x + 15?
19. При каких значениях k прямая y = kx – 10 имеет только одну общую точку с графиком функции y = 2x 2 + 3x – 2? Для найденных значений k определите координаты точки.
20. При каких значениях b касательная, проведенная к графику функции y = bx 3 – 2x 2 – 4 в точке с абсциссой x0 = 2, проходит через точку M(1; 8)?
21. Парабола с вершиной на оси Ox касается прямой, проходящей через точки A(1; 2) и B(2; 4), в точке B. Найдите уравнение параболы.
Ответ:
22. При каком значении коэффициента k парабола y = x 2 + kx + 1 касается оси Ox?
23. Найдите углы между прямой y = x + 2 и кривой y = 2x 2 + 4x – 3.
Ответ:
24. Определите, под какими углами пересекаются графики функций y = 2x 2 + 3x – 3 и y = x 2 + 2x + 3.
Ответ:
25. При каком значении k угол между кривыми y = x 2 + 2x + k и y = x 2 + 4x + 4 будет равен 45°?
26. Найдите все значения x0, при каждом из которых касательные к графикам функции y = 5cos 3x + 2 и y = 3cos 5x в точках в абсциссой x0 параллельны.
Ответ:
27. Под каким углом видна окружность x 2 + y 2 = 16 из точки (8; 0)?
Ответ:
28. Найдите геометрическое место точек, из которых парабола y = x 2 видна под прямым углом?
Ответ: прямая
29. Найдите расстояние между касательными к графику функции образующими с положительным направлением оси Ox угол 45°.
Ответ:
30. Найдите геометрическое место вершин всех парабол вида y = x 2 + ax + b, касающихся прямой y = 4x – 1.
Источник
Уравнение касательной к графику функции
Статья опубликована при поддержке Гостиничного комплекса «ИТАКА+». Останавливаясь в городе судостроителей Северодвинске, вы не столкнетесь с проблемой поиска временного жилья. Тут, на сайте гостиничного комплекса «ИТАКА+» http://itakaplus.ru, вы сможете легко и быстро снять квартиру в городе, на любой срок, с посуточной оплатой.
На современном этапе развития образования в качестве одной из основных его задач выступает формирование творчески мыслящей личности. Способность же к творчеству у учащихся может быть развита лишь при условии систематического привлечения их к основам исследовательской деятельности. Фундаментом для применения учащимися своих творческих сил, способностей и дарований являются сформированные полноценные знания и умения. В связи с этим проблема формирования системы базовых знаний и умений по каждой теме школьного курса математики имеет немаловажное значение. При этом полноценные умения должны являться дидактической целью не отдельных задач, а тщательно продуманной их системы. В самом широком смысле под системой понимается совокупность взаимосвязанных взаимодействующих элементов, обладающая целостностью и устойчивой структурой.
Рассмотрим методику обучения учащихся составлению уравнения касательной к графику функции. По существу, все задачи на отыскание уравнения касательной сводятся к необходимости отбора из множества (пучка, семейства) прямых тех из них, которые удовлетворяют определенному требованию – являются касательными к графику некоторой функции. При этом множество прямых, из которого осуществляется отбор, может быть задано двумя способами:
а) точкой, лежащей на плоскости xOy (центральный пучок прямых);
б) угловым коэффициентом (параллельный пучок прямых).
В связи с этим при изучении темы «Касательная к графику функции» с целью вычленения элементов системы нами были выделены два типа задач:
1) задачи на касательную, заданную точкой, через которую она проходит;
2) задачи на касательную, заданную ее угловым коэффициентом.
Обучение решению задач на касательную осуществлялось при помощи алгоритма, предложенного А.Г. Мордковичем [2]. Его принципиальное отличие от уже известных заключается в том, что абсцисса точки касания обозначается буквой a (вместо x0), в связи с чем уравнение касательной приобретает вид
(сравните с y = f(x0) + f ‘(x0)(x – x0)). Этот методический прием, на наш взгляд, позволяет учащимся быстрее и легче осознать, где в общем уравнении касательной записаны координаты текущей точки, а где – точки касания.
Алгоритм составления уравнения касательной к графику функции y = f(x)
1. Обозначить буквой a абсциссу точки касания.
2. Найти f(a).
3. Найти f ‘(x) и f ‘(a).
4. Подставить найденные числа a, f(a), f ‘(a) в общее уравнение касательной y = f(a) = f ‘(a)(x – a).
Этот алгоритм может быть составлен на основе самостоятельного выделения учащимися операций и последовательности их выполнения.
Практика показала, что последовательное решение каждой из ключевых задач при помощи алгоритма позволяет формировать умения написания уравнения касательной к графику функции поэтапно, а шаги алгоритма служат опорными пунктами действий. Данный подход соответствует теории поэтапного формирования умственных действий, разработанной П.Я. Гальпериным и Н.Ф. Талызиной [3].
Задача 1. Составьте уравнение касательной к графику функции
в точке M(3; – 2).
Решение. Точка M(3; – 2) является точкой касания, так как
1. a = 3 – абсцисса точки касания.
2. f(3) = – 2.
3. f ‘(x) = x 2 – 4, f ‘(3) = 5.
y = – 2 + 5(x – 3), y = 5x – 17 – уравнение касательной.
Задача 2. Напишите уравнения всех касательных к графику функции y = – x 2 – 4x + 2, проходящих через точку M(– 3; 6).
Решение. Точка M(– 3; 6) не является точкой касания, так как f(– 3) 6 (рис. 2).
1. a – абсцисса точки касания.
2. f(a) = – a 2 – 4a + 2.
3. f ‘(x) = – 2x – 4, f ‘(a) = – 2a – 4.
4. y = – a 2 – 4a + 2 – 2(a + 2)(x – a) – уравнение касательной.
Касательная проходит через точку M(– 3; 6), следовательно, ее координаты удовлетворяют уравнению касательной.
6 = – a 2 – 4a + 2 – 2(a + 2)(– 3 – a),
a 2 + 6a + 8 = 0 ^ a1 = – 4, a2 = – 2.
Если a = – 4, то уравнение касательной имеет вид y = 4x + 18.
Если a = – 2, то уравнение касательной имеет вид y = 6.
Задача 3. Напишите уравнения всех касательных к графику функции y = x 3 – 3x 2 + 3, параллельных прямой y = 9x + 1.
1. a – абсцисса точки касания.
2. f(a) = a 3 – 3a 2 + 3.
3. f ‘(x) = 3x 2 – 6x, f ‘(a) = 3a 2 – 6a.
Но, с другой стороны, f ‘(a) = 9 (условие параллельности). Значит, надо решить уравнение 3a 2 – 6a = 9. Его корни a = – 1, a = 3 (рис. 3).
y = 9x + 8 – уравнение касательной;
y = 9x – 24 – уравнение касательной.
Задача 4. Напишите уравнение касательной к графику функции y = 0,5x 2 – 3x + 1, проходящей под углом 45° к прямой y = 0 (рис. 4).
Решение. Из условия f ‘(a) = tg 45° найдем a: a – 3 = 1 ^ a = 4.
1. a = 4 – абсцисса точки касания.
2. f(4) = 8 – 12 + 1 = – 3.
3. f ‘(4) = 4 – 3 = 1.
4. y = – 3 + 1(x – 4).
y = x – 7 – уравнение касательной.
Несложно показать, что решение любой другой задачи сводится к решению одной или нескольких ключевых задач. Рассмотрим в качестве примера следующие две задачи.
1. Напишите уравнения касательных к параболе y = 2x 2 – 5x – 2, если касательные пересекаются под прямым углом и одна из них касается параболы в точке с абсциссой 3 (рис. 5).
Решение. Поскольку дана абсцисса точки касания, то первая часть решения сводится к ключевой задаче 1.
1. a = 3 – абсцисса точки касания одной из сторон прямого угла.
2. f(3) = 1.
3. f ‘(x) = 4x – 5, f ‘(3) = 7.
4. y = 1 + 7(x – 3), y = 7x – 20 – уравнение первой касательной.
Пусть a – угол наклона первой касательной. Так как касательные перпендикулярны, то – угол наклона второй касательной. Из уравнения y = 7x – 20 первой касательной имеем tg a = 7. Найдем
Это значит, что угловой коэффициент второй касательной равен .
Дальнейшее решение сводится к ключевой задаче 3.
Пусть B(c; f(c)) есть точка касания второй прямой, тогда
1.
– абсцисса второй точки касания.
2.![]()
3.![]()
4.![]()
– уравнение второй касательной.
Примечание. Угловой коэффициент касательной может быть найден проще, если учащимся известно соотношение коэффициентов перпендикулярных прямых k1•k2 = – 1.
2. Напишите уравнения всех общих касательных к графикам функций
Решение. Задача сводится к отысканию абсцисс точек касания общих касательных, то есть к решению ключевой задачи 1 в общем виде, составлению системы уравнений и последующему ее решению (рис. 6).
1. Пусть c – абсцисса точки касания, лежащей на графике функции
![]()
2.![]()
3. f ‘(c) = c.
4.
Так как касательные общие, то
Итак, y = x + 1 и y = – 3x – 3 – общие касательные.
Основная цель рассмотренных задач – подготовить учащихся к самостоятельному распознаванию типа ключевой задачи при решении более сложных задач, требующих определенных исследовательских умений (умения анализировать, сравнивать, обобщать, выдвигать гипотезу и т. д.). К числу таких задач можно отнести любую задачу, в которую ключевая задача входит как составляющая. Рассмотрим в качестве примера задачу (обратную задаче 1) на нахождение функции по семейству ее касательных.
3. При каких b и c прямые y = x и y = – 2x являются касательными к графику функции y = x 2 + bx + c?
Составим и решим систему уравнений
Ответ:
Задачи для самостоятельного решения
1. Напишите уравнения касательных, проведенных к графику функции y = 2x 2 – 4x + 3 в точках пересечения графика с прямой y = x + 3.
Ответ: y = – 4x + 3, y = 6x – 9,5.
2. При каких значениях a касательная, проведенная к графику функции y = x 2 – ax в точке графика с абсциссой x0 = 1, проходит через точку M(2; 3)?
3. При каких значениях p прямая y = px – 5 касается кривой y = 3x 2 – 4x – 2?
4. Найдите все общие точки графика функции y = 3x – x 3 и касательной, проведенной к этому графику через точку P(0; 16).
Ответ: A(2; – 2), B(– 4; 52).
5. Найдите кратчайшее расстояние между параболой y = x 2 + 6x + 10 и прямой
Ответ:
6. На кривой y = x 2 – x + 1 найдите точку, в которой касательная к графику параллельна прямой y – 3x + 1 = 0.
7. Напишите уравнение касательной к графику функции y = x 2 + 2x – | 4x |, которая касается его в двух точках. Сделайте чертеж.
8. Докажите, что прямая y = 2x – 1 не пересекает кривую y = x 4 + 3x 2 + 2x. Найдите расстояние между их ближайшими точками.
Ответ:
9. На параболе y = x 2 взяты две точки с абсциссами x1 = 1, x2 = 3. Через эти точки проведена секущая. В какой точке параболы касательная к ней будет параллельна проведенной секущей? Напишите уравнения секущей и касательной.
Ответ: y = 4x – 3 – уравнение секущей; y = 4x – 4 – уравнение касательной.
10. Найдите угол q между касательными к графику функции y = x 3 – 4x 2 + 3x + 1, проведенными в точках с абсциссами 0 и 1.
11. В каких точках касательная к графику функции образует с осью Ox угол в 135°?
12. В точке A(1; 8) к кривой проведена касательная. Найдите длину отрезка касательной, заключенного между осями координат.
Ответ:
13. Напишите уравнение всех общих касательных к графикам функций y = x 2 – x + 1 и y = 2x 2 – x + 0,5.
Ответ: y = – 3x и y = x.
14. Найдите расстояние между касательными к графику функции параллельными оси абсцисс.
Ответ:
15. Определите, под какими углами парабола y = x 2 + 2x – 8 пересекает ось абсцисс.
Ответ: q 1 = arctg 6, q 2 = arctg (– 6).
16. На графике функции найдите все точки, касательная в каждой из которых к этому графику пересекает положительные полуоси координат, отсекая от них равные отрезки.
17. Прямая y = 2x + 7 и парабола y = x 2 – 1 пересекаются в точках M и N. Найдите точку K пересечения прямых, касающихся параболы в точках M и N.
18. При каких значениях b прямая y = 9x + b является касательной к графику функции y = x 3 – 3x + 15?
19. При каких значениях k прямая y = kx – 10 имеет только одну общую точку с графиком функции y = 2x 2 + 3x – 2? Для найденных значений k определите координаты точки.
20. При каких значениях b касательная, проведенная к графику функции y = bx 3 – 2x 2 – 4 в точке с абсциссой x0 = 2, проходит через точку M(1; 8)?
21. Парабола с вершиной на оси Ox касается прямой, проходящей через точки A(1; 2) и B(2; 4), в точке B. Найдите уравнение параболы.
Ответ:
22. При каком значении коэффициента k парабола y = x 2 + kx + 1 касается оси Ox?
23. Найдите углы между прямой y = x + 2 и кривой y = 2x 2 + 4x – 3.
Ответ:
24. Определите, под какими углами пересекаются графики функций y = 2x 2 + 3x – 3 и y = x 2 + 2x + 3.
Ответ:
25. При каком значении k угол между кривыми y = x 2 + 2x + k и y = x 2 + 4x + 4 будет равен 45°?
26. Найдите все значения x0, при каждом из которых касательные к графикам функции y = 5cos 3x + 2 и y = 3cos 5x в точках в абсциссой x0 параллельны.
Ответ:
27. Под каким углом видна окружность x 2 + y 2 = 16 из точки (8; 0)?
Ответ:
28. Найдите геометрическое место точек, из которых парабола y = x 2 видна под прямым углом?
Ответ: прямая
29. Найдите расстояние между касательными к графику функции образующими с положительным направлением оси Ox угол 45°.
Ответ:
30. Найдите геометрическое место вершин всех парабол вида y = x 2 + ax + b, касающихся прямой y = 4x – 1.
Ответ: прямая y = 4x + 3.
Литература
1. Звавич Л.И., Шляпочник Л.Я., Чинкина М.В. Алгебра и начала анализа: 3600 задач для школьников и поступающих в вузы. – М., Дрофа, 1999.
2. Мордкович А. Семинар четвертый для молодых учителей. Тема «Приложения производной». – М., «Математика», № 21/94.
3. Формирование знаний и умений на основе теории поэтапного усвоения умственных действий. / Под ред. П.Я. Гальперина, Н.Ф. Талызиной. – М., МГУ, 1968.
Источник