при каких значениях а и в выражение a and b a or b истинно

Содержание
  1. Построение таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.
  2. Как пользоваться калькулятором
  3. Видеоинструкция к калькулятору
  4. Используемые символы
  5. Обозначения логических операций
  6. Что умеет калькулятор
  7. Что такое булева функция
  8. Что такое таблица истинности?
  9. Логические операции
  10. Таблица истинности логических операций
  11. Как задать логическую функцию
  12. Способы представления булевой функции
  13. Совершенная дизъюнктивная нормальная форма (ДНФ)
  14. Совершенная конъюнктивная нормальная форма (КНФ)
  15. Алгебраическая нормальная форма (АНФ, полином Жегалкина)
  16. Алгоритм построения СДНФ для булевой функции
  17. Алгоритм построения СКНФ для булевой функции
  18. Алгоритм построения полинома Жегалкина булевой функции
  19. Примеры построения различных представлений логических функций
  20. Построение совершенной дизъюнктивной нормальной формы:
  21. Построение совершенной конъюнктивной нормальной формы:
  22. Построение полинома Жегалкина:
  23. При каких значениях а и в выражение a and b a or b истинно
  24. Логические выражения и таблица истинности
  25. Логические выражения и таблица истинности
  26. Учитель информатики
  27. Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.
  28. Таблицы истинности
  29. 19.1. Построение таблиц истинности
  30. 19.2. Анализ таблиц истинности
  31. САМОЕ ГЛАВНОЕ
  32. Вопросы и задания

Построение таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.

Онлайн калькулятор позволяет быстро строить таблицу истинности для произвольной булевой функции или её вектора, рассчитывать совершенную дизъюнктивную и совершенную конъюнктивную нормальные формы, находить представление функции в виде полинома Жегалкина, строить карту Карно и классифицировать функцию по классам Поста.

Калькулятор таблицы истинности, СКНФ, СДНФ, полинома Жегалкина

введите функцию или её вектор

Построено таблиц, форм:

Как пользоваться калькулятором

Видеоинструкция к калькулятору

Используемые символы

Для смены порядка выполнения операций используются круглые скобки ().

Обозначения логических операций

Что умеет калькулятор

Что такое булева функция

Что такое таблица истинности?

Довольно часто встречается вариант таблицы, в которой число столбцов равно n + число используемых логических операций. В такой таблице также первые n столбцов заполнены наборами аргументов, а оставшиеся столбцы заполняются значениями подфункций, входящих в запись функции, что позволяет упростить расчёт конечного значения функции за счёт уже промежуточных вычислений.

Логические операции

Логическая операция — операция над высказываниями, позволяющая составлять новые высказывания путём соединения более простых. В качестве основных операций обычно называют конъюнкцию (∧ или &), дизъюнкцию (∨ или |), импликацию (→), отрицание (¬), эквивалентность (=), исключающее ИЛИ (⊕).

Таблица истинности логических операций

a b a ∧ b a ∨ b ¬a ¬b a → b a = b a ⊕ b
0 0 0 0 1 1 1 1 0
0 1 0 1 1 0 1 0 1
1 0 0 1 0 1 0 0 1
1 1 1 1 0 0 1 1 0

Как задать логическую функцию

Есть множество способов задать булеву функцию:

Рассмотрим некоторые из них:

Чтобы задать функцию в виде формулы, необходимо записать математическое выражение, состоящее из аргументов функции и логических операций. Например, можно задать такую функцию: a∧b ∨ b∧c ∨ a∧c

Способы представления булевой функции

С помощью формул можно получать огромное количество разнообразных функций, причём с помощью разных формул можно получить одну и ту же функцию. Иногда бывает весьма полезно узнать, как построить ту или иную функцию, используя лишь небольшой набор заданных операций или используя как можно меньше произвольных операций. Рассмотрим основные способы задания булевых функций:

Совершенная дизъюнктивная нормальная форма (ДНФ)

Простая конъюнкция — это конъюнкция некоторого конечного набора переменных, или их отрицаний, причём каждая переменная встречается не более одного раза.
Дизъюнктивная нормальная форма (ДНФ) — это дизъюнкция простых конъюнкций.
Совершенная дизъюнктивная нормальная форма (СДНФ) — ДНФ относительно некоторого заданного конечного набора переменных, в каждую конъюнкцию которой входят все переменные данного набора.

Например, ДНФ является функция ¬a bc ∨ ¬a ¬b c ∨ ac, но не является СДНФ, так как в последней конъюнкции отсутствует переменная b.

Совершенная конъюнктивная нормальная форма (КНФ)

Простая дизъюнкция — это дизъюнкция одной или нескольких переменных, или их отрицаний, причём каждая переменная входит в неё не более одного раза.
Конъюнктивная нормальная форма (КНФ) — это конъюнкция простых дизъюнкций.
Совершенная конъюнктивная нормальная форма (СКНФ) — КНФ относительно некоторого заданного конечного набора переменных, в каждую дизъюнкцию которой входят все переменные данного набора.

Например, КНФ является функция (a ∨ b) ∧ (a ∨ b ∨ c), но не является СДНФ, так как в первой дизъюнкции отсутствует переменная с.

Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Алгебраическая нормальная форма, полином Жегалкина — это форма представления логической функции в виде полинома с коэффициентами вида 0 и 1, в котором в качестве произведения используется операция конъюнкции, а в качестве сложения — исключающее ИЛИ.

Примеры полиномов Жегалкина: 1, a, a⊕b, ab⊕a⊕b⊕1

Алгоритм построения СДНФ для булевой функции

Алгоритм построения СКНФ для булевой функции

Алгоритм построения полинома Жегалкина булевой функции

Есть несколько методов построения полинома Жегалкина, в данной статье рассмотрим наиболее удобный и простой из всех.

Примеры построения различных представлений логических функций

Построим совершенные дизъюнктивную и дизъюнктивную нормальные формы, а также полином Жегалкина для функции трёх переменных F = ¬a b∨ ¬b c∨ca

1. Построим таблицу истинности для функции

a b c ¬a ¬a ∧b ¬b ¬b ∧c ¬a ∧b∨ ¬b ∧c c∧a ¬a ∧b∨ ¬b ∧c∨c∧a
0 0 0 1 0 1 0 0 0 0
0 0 1 1 0 1 1 1 0 1
0 1 0 1 1 0 0 1 0 1
0 1 1 1 1 0 0 1 0 1
1 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 1 1

Построение совершенной дизъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает истинное значение: < 0, 0, 1 > < 0, 1, 0 > < 0, 1, 1 > < 1, 0, 1 >

В соответствие найденным наборам поставим элементарные конъюнкции по всем переменным, причём если переменная в наборе принимает значение 0, то она будет записана с отрицанием:

Объединим конъюнкции с помощью дизъюнкции и получим совершенную дизъюнктивную нормальную форму:

Построение совершенной конъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает ложное значение: < 0, 0, 0 > < 1, 0, 0 >

В соответствие найденным наборам поставим элементарные дизъюнкции по всем переменным, причём если переменная в наборе принимает значение 1, то она будет записана с отрицанием:

Объединим дизъюнкции с помощью конъюнкции и получим совершенную конъюнктивную нормальную форму:

Построение полинома Жегалкина:

Добавим новый столбец к таблице истинности и запишем в 1, 3, 5 и 7 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 2, 4, 6 и 8 сложим по модулю два со значениями из соответственно 1, 3, 5 и 7 строк:

a b c F 1
0 0 0 0 0
0 0 1 1 ⊕ 0 1
0 1 0 1 1
0 1 1 1 ⊕ 1 0
1 0 0 0 0
1 0 1 1 ⊕ 0 1
1 1 0 0 0
1 1 1 1 ⊕ 0 1

Добавим новый столбец к таблице истинности и запишем в 1 и 2, 5 и 6 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 3 и 4, 7 и 8 сложим по модулю два со значениями из соответственно 1 и 2, 5 и 6 строк:

a b c F 1 2
0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 1 1 ⊕ 0 1
0 1 1 1 0 ⊕ 1 1
1 0 0 0 0 0
1 0 1 1 1 1
1 1 0 0 0 ⊕ 0 0
1 1 1 1 1 ⊕ 1 0

Добавим новый столбец к таблице истинности и запишем в 1 2, 3 и 4 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 5, 6, 7 и 8 сложим по модулю два со значениями из соответственно 1, 2, 3 и 4 строк:

a b c F 1 2 3
0 0 0 0 0 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1
1 0 0 0 0 0 ⊕ 0 0
1 0 1 1 1 1 ⊕ 1 0
1 1 0 0 0 0 ⊕ 1 1
1 1 1 1 1 0 ⊕ 1 1

Окончательно получим такую таблицу:

a b c F 1 2 3
0 0 0 0 0 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 1 1 1 1 0
1 1 0 0 0 0 1
1 1 1 1 1 0 1

Выпишем наборы, на которых получившийся вектор принимает единичное значение и запишем вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора следует записать единицу):

Объединяя полученные конъюнкции с помощью операции исключающего или, получим полином Жегалкина: c⊕b⊕bc⊕ab⊕abc

Programforyou — это сообщество, в котором Вы можете подтянуть свои знания по программированию, узнать, как эффективно решать те или иные задачи, а также воспользоваться нашими онлайн сервисами.

Источник

При каких значениях а и в выражение a and b a or b истинно

Переменные логического типа могут принимать значения: False(ложь) = 0 или True (истина) = 1. Он широко применяется в логических выражениях и выражениях отношения. Для размещения в памяти переменной булевского типа требуется 1 байт.
В языке Паскаль False

VAR
b1, b2, b3, b4 : boolean;

Операция not (не) имеет один операнд и образует его логическое отрицание. Результат операции not есть False, если операнд истинен, и True, если операнд имеет значение ложь.

переменная A операция not(A)
0 1
1 0

Логические операции, операции отношения и арифметические операции часто встречаются в одном выражении. При этом отношения, стоящие слева и справа от знака логической операции, должны быть заключены в скобки, поскольку логические операции имеют более высокий приоритет. Вообще принят следующий приоритет операций:

Кроме того, порядок выполнения операций может изменяться скобками. Например, в логическом выражении расставим порядок действийй

A or B and not (A or B)

Сначала выполняется заключенная в скобки операция or, а затем операции not, and, or. Если подставить вместо переменных А и В значения True и False, то, используя уже рассмотренный порядок действий, получим значение всего выражения равное True.

Вычислите значения выражений при a=10, b=20, c=true, d=false:

Источник

Логические выражения и таблица истинности

Логические выражения и таблица истинности

Таблица истинности — таблица, показывающая, какие значения принимает составное высказывание при всех сочетаниях (наборах) значений входящих в него простых высказываний.

Логическое выражение — составные высказывания в виде формулы.

Равносильные логические выражения – логические выражения, у которых последние столбцы таблиц истинности совпадают. Для обозначения равносильности используется знак «=».

Алгоритм построения таблицы истинности:

1. подсчитать количество переменных n в логическом выражении;

3. подсчитать количество логических операций в формуле;

4. установить последовательность выполнения логических операций с учетом скобок и приоритетов;

5. определить количество столбцов: число переменных + число операций;

6. выписать наборы входных переменных;

7. провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии с установленной в пункте 4 последовательностью.

Заполнение таблицы:

1. разделить колонку значений первой переменной пополам и заполнить верхнюю часть «0», а нижнюю «1»;

2. разделить колонку значений второй переменной на четыре части и заполнить каждую четверть чередующимися группами «0» и «1», начиная с группы «0»;

3. продолжать деление колонок значений последующих переменных на 8, 16 и т.д. частей и заполнение их группами «0» или «1» до тех пор, пока группы «0» и «1» не будут состоять из одного символа.

Пример 1. Для формулы A/\ (B \/ ¬B /\¬C) постройте таблицу истинности.

Количество логических переменных 3, следовательно, количество строк — 2 3 = 8.

Количество логических операций в формуле 5, количество логических переменных 3, следовательно количество столбцов — 3 + 5 = 8.

1

1. В выражении две переменные А и В (n=2).

3. В формуле 5 логических операций.

4. Расставляем порядок действий

1) А\/ В; 2) ¬А; 3) ¬В; 4) ¬А\/¬В; 5) (А\/ В)/\(¬А\/¬В).

5. Кстолбцов=n+5=2+5=7 столбцов.

Источник

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Таблицы истинности

Информатика. 10 класса. Босова Л.Л. Оглавление

§ 19. Таблицы истинности

19.1. Построение таблиц истинности

Таблицу значений, которые принимает логическое выражение при всех сочетаниях значений (наборах) входящих в него переменных, называют таблицей истинности логического выражения.

Для того чтобы построить таблицу истинности логического выражения, достаточно:

Пример 1. Построим таблицу истинности для логического выражения

Tablicy istinnosti19 1

В этом выражении две логические переменные и пять логических операций. Всего в таблице истинности будет пять строк (22 плюс строка заголовков) и 7 столбцов.

Начнём заполнять таблицу истинности с учётом следующего порядка выполнения логических операций: сначала выполняются операции отрицания (в порядке следования), затем операции конъюнкции (в порядке следования), последней выполняется дизъюнкция.

Tablicy istinnosti19 2 Tablicy istinnosti19 3

Обратите внимание на последний столбец, содержащий конечный результат. Какой из рассмотренных логических операций он соответствует?

Логические выражения, зависящие от одних и тех же логических переменных, называются равносильными или эквивалентными, если для всех наборов входящих в них переменных значения выражений в таблицах истинности совпадают.

Таблица истинности, построенная в предыдущем примере, доказывает равносильность выражений

Tablicy istinnosti19 4

Tablicy istinnosti19 5

С помощью таблиц истинности докажите равносильность выражений

Tablicy istinnosti19 6

Функцию от n переменных, аргументы которой и сама функция принимают только два значения — 0 и 1, называют логической функцией. Таблица истинности может рассматриваться как способ задания логической функции.

19.2. Анализ таблиц истинности

Рассмотрим несколько примеров.

Пример 2. Известен фрагмент таблицы истинности для логического выражения F, содержащего логические переменные А, В и С.

Tablicy istinnosti19 7

Сколько из приведённых ниже логических выражений соответствуют этому фрагменту?

Ответить на поставленный вопрос можно, вычислив значение каждого логического выражения на каждом заданном наборе переменных и сравнив его с имеющимся значением F.

1) Логическое выражение (A v С) & В соответствует данному фрагменту таблицы истинности:

Tablicy istinnosti19 8

2) Логическое выражение (A v В) & (С → А) не соответствует данному фрагменту таблицы истинности, т. к. уже на первом наборе значение рассматриваемого логического выражения не совпадает со значением F. Проведение дальнейших вычислений не имеет смысла.

Tablicy istinnosti19 9

3) Логическое выражение (А & В v С) & (В → А & С) не соответствует данному фрагменту таблицы истинности:

Tablicy istinnosti19 10

4) Логическое выражение (А → В) v (С v А → В) соответствует данному фрагменту таблицы истинности:

Tablicy istinnosti19 11

Итак, имеется два логических выражения, соответствующих заданному фрагменту таблицы истинности.

Можно ли утверждать, что в результате решения задачи мы нашли логическое выражение F?

Пример 3. Логическая функция F задаётся выражением:

Tablicy istinnosti19 12

Ниже приведён фрагмент таблицы истинности, содержащий все наборы переменных, на которых F истинна.

Tablicy istinnosti19 13

Определим, какому столбцу таблицы истинности функции F соответствует каждая из переменных х, y > z.

В исходном логическом выражении задействовано три логические переменные. Полная таблица истинности для этого выражения должна состоять из 8 (2 3 ) строк.

Наборам переменных, на которых логическое выражение истинно, соответствуют десятичные числа 0, 2, 3, 4 и 7.

Следовательно, наборам переменных, на которых логическое выражение ложно, должны соответствовать десятичные числа 1, 5 и 6 (их двоичные коды 001, 101 и 110). Построим по этим данным вторую часть таблицы истинности:

Tablicy istinnosti19 14

Теперь выясним, при каких значениях х, у, z логическое выражение ложно:

Tablicy istinnosti19 15

Логическое произведение ложно, если хотя бы один из операндов равен нулю. Таким образом, мы имеем две дизъюнкции, каждая из которых должна быть ложной. Это возможно только в случае равенства нулю каждого из операндов, входящих в дизъюнкцию. Подберём подходящие значения х, у и z, заполняя следующую таблицу:

Tablicy istinnosti19 16

Первая дизъюнкция равна нулю на наборе 011. Для равенства нулю второй дизъюнкции требуется, чтобы х = 1, у = 0, а z может быть и 0, и 1.

Tablicy istinnosti19 17 1

Сравним эту таблицу с восстановленным нами фрагментом исходной таблицы истинности, предварительно подсчитав, сколько раз каждая переменная принимает единичное значение.

Tablicy istinnosti19 18

Переменная у принимает единичное значение только один раз. Следовательно, ей соответствует второй столбец исходной таблицы. Из таблицы со значениями х, у и z следует, что при у = 1: х = 0, а z = 1. Следовательно, переменной z соответствует первый столбец, а переменной х — третий столбец исходной таблицы.

Убедиться в правильности полученного ответа можно, полностью заполнив следующую таблицу:

Tablicy istinnosti19 19

САМОЕ ГЛАВНОЕ

Таблицу значений, которые принимает логическое выражение при всех сочетаниях значений (наборах) входящих в него переменных, называют таблицей истинности логического выражения.

Истинность логического выражения можно доказать путём построения его таблицы истинности.

Функцию от п переменных, аргументы которой и сама функция принимают только два значения — 0 и 1, называют логической функцией. Таблица истинности может рассматриваться как способ задания логической функции.

Вопросы и задания

1. Что представляет собой таблица истинности?

2. Составлена таблица истинности для логического выражения, содержащего n переменных. Известно m — количество строк, в которых выражение принимает значение 0. Требуется выяснить, в скольких случаях логическое выражение примет значение 1 при следующих значениях n и m:

1) n = 6, m = 15;
2) n = 7, m = 100;
3) n = 10, m = 500.

3. Постройте таблицы истинности для следующих логических выражений:

Tablicy istinnosti19 20

4. Рассмотрите два составных высказывания:

• F1 = «Если одно слагаемое делится на 3 и сумма делится на 3, то и другое слагаемое делится на 3»;
• F2 = «Если одно слагаемое делится на 3, а другое слагаемое не делится на 3, то сумма не делится на 3».

Формализуйте эти высказывания, постройте таблицы истинности для каждого из полученных выражений и убедитесь, что результирующие столбцы совпадают.

5. Логическое выражение, являющееся истинным при любом наборе входящих в него переменных, называется тождественно истинным. Убедитесь, что следующие логические выражения являются тождественно истинными:

Tablicy istinnosti19 21

6. Какое из приведённых логических выражений равносильно выражению (А → С) & (B → С)?

1) А & В → С;
2) А → В → С;
3) A v Б → С;
4) А ↔ Б → С.

7. Известен фрагмент таблицы истинности для логического выражения F, содержащего логические переменные А, В и С.

Tablicy istinnosti19 22

Какое из приведённых далее логических выражений соответствуют этому фрагменту?

Tablicy istinnosti19 23

8. Логическая функция F задаётся выражением

Tablicy istinnosti19 24

Ниже приведён фрагмент таблицы истинности, содержащий все наборы переменных, на которых F ложна.

ur 23 25

Какому столбцу таблицы истинности функции F соответствует каждая из переменных А, В, С?

Источник

admin
Производства
Adblock
detector