при каких условиях усилитель превращается в автогенератор при обратной связи равной 1

ПРЕВРАЩЕНИЕ В ГЕНЕРАТОР

Человек, изучающий электронику, подобен туристу, плывущему мимо красивейших берегов Крыма или Кавказа и вынужденному наблюдать эти берега лишь с борта корабля. Человек, изучающий электронику, очень часто проплывает мимо изумительно красивых явлений природы, мимо очень важных, можно даже сказать – фундаментальных, научных проблем и не имеет возможности сойти на берег, чтобы познакомиться с ними. Иначе путешествие слишком затянется или даже изменится его конечный маршрут. (Последнее, кстати, совсем неплохо, но только не в начале пути. Есть немало примеров того, как радиоинженеры уходили в биологию, ракетостроение, математику, химию, медицину, геофизику, сельское хозяйство, астрономию и другие области. Обогащенные методами и идеями электроники, они открывали в этих областях науки новые направления или, подобно катализатору, резко ускоряли ход исследований.)

Мы с вами уже прошли мимо таких интересных и общих проблем как преобразование структуры вещества, универсальность гармонических (синусоидальных) колебаний, преобразование спектра сигнала, согласование генератора с нагрузкой, управление мощными потоками энергии с помощью слабых сигналов и др. Сейчас нам предстоит встреча еще с одним общим, универсальным явлением – с возникновением автоколебаний.

Мы часто встречаем механические автоколебания: вибрация самолетного крыла и автоколебания в гидравлических системах (вам наверняка приходилось слышать «поющий» водопроводный кран), и автоколебания далеких звезд, и автоколебания в мире атома, автоколебания при ядерных реакциях и электромагнитные автоколебания. Есть серьезные основания думать, что автоколебания играют важнейшую роль и в живой природе, что сама жизнь – это огромное многообразие разного рода, разной степени сложности биохимических автоколебаний.

Что же такое автоколебания? Энциклопедический словарь определяет их так: «…незатухающие колебания, которые могут существовать в какой‑либо системе в отсутствие переменного внешнего воздействия, причем амплитуда и период колебаний определяются свойствами самой системы». Применительно к транзисторному устройству, где создаются автоколебания (вы уже, конечно, догадались, что именно такое устройство и называется транзисторным генератором), это определение нужно понимать следующим образом. Мы подводим к генератору только питающее постоянное напряжение, а он дает нам непрерывные, непрекращающиеся электрические колебания (конечно, когда батарея разрядится, то колебания прекратятся, но об этом сейчас не стоит говорить). Генератор создает в своих цепях переменный ток и переменное напряжение, частота и амплитуда которых зависят только от элементов самой транзисторной схемы.

Очевидно, это определение направило ваши мысли к колебательному контуру. Ведь в нем тоже под действием постоянной порции энергии, например под действием энергии, полученной при зарядке конденсатора, возникают электрические колебания. И частота этих колебаний тоже зависит только от элементов самой системы – от индуктивности L к катушки к емкости Ск конденсатора (Воспоминание № 20). Однако собственные колебания в контуре постепенно затухают, и таким образом нарушается основной элемент определения – «…незатухающие колебания».

И все же мы обратились к колебательному контуру не напрасно. В сочетании с транзисторным усилителем он позволяет получить самый настоящий генератор автоколебаний.

Почему затухают колебания в контуре? Потому что часть энергии теряется на активном сопротивлении потерь Rк и постепенно оно отбирает и превращает в тепло или в излучения всю запасенную в контуре энергию. Отсюда следует: чтобы колебания в контуре стали незатухающими, нужно ликвидировать сопротивление потерь. Или каким‑то образом его скомпенсировать.

Чтобы автогенератор давал электрические колебания с неизменной амплитудой, нужно решить чрезвычайно сложную задачу: нужно, чтобы вносимое в контур отрицательное сопротивление было в точности равно собственному сопротивлению потерь, чтобы в контур через цепь обратной связи поступало ровно столько энергии, сколько нужно для компенсации потерь. Не меньше и не больше, потому что, если ввести в контур хоть чуть‑чуть меньше энергии, чем нужно, колебания рано или поздно затухнут. А если ввести хоть немного лишней энергии, то амплитуда колебаний будет расти. Осуществить столь точную, ювелирную дозировку вводимой в контур энергии просто невозможно. Если даже в какой‑то момент путем тщательнейшего подбора расстояния между контурной катушкой Lк и катушкой обратной связи Lксв удастся установить необходимый баланс, то уже через мгновение он по какой‑либо причине окажется нарушенным. То ли легкая вибрация (например, из‑за проехавшего по улице автомобиля) сдвинет катушки на какой‑нибудь микрон, то ли напряжение батареи уменьшится на какой‑нибудь микровольт, то ли сопротивление проводов увеличится на какие‑то доли ома из‑за легкого дуновения ветерка. Одним словом, автогенератор всегда находится в неустойчивом динамическом состоянии, и, для того чтобы амплитуда колебаний оставалась постоянной, нужно ввести некое автоматическое устройство, которое все время регулировало бы степень положительной обратной связи.

Подобная задача уже возникала перед нами, когда мы создавали систему автоматической стабилизации режима транзисторного усилителя. Уже тогда мы отметили, какую большую роль играет в электронной аппаратуре малая автоматизация. Еще один пример простейшей схемы авторегулировки мы встречаем в генераторе незатухающих колебаний, например, в виде схемы, постепенно запирающей транзистор, с увеличением управляющего сигнала.

Итак, для того чтобы усилитель превратился в генератор и давал незатухающие электрические колебания, нужно выполнить два условия. Их обычно называют условием фаз и условием связи (рис. 114).

image178

Рис. 114. Для получения автоколебаний необходимо выполнить два условия: условие фаз и условие связи.

(Рис. 110–113 см. на цветной вклейке между стр. 288–289)[2].

Выполнить условие фаз – это значит подать из выходной цепи во входную сигнал именно в такой фазе, чтобы он компенсировал потери энергии. Проще говоря, в автогенераторе обратная связь должна быть положительной. Выполнить условие связи – значит подать из выходной цепи во входную сигнал настолько мощный, чтобы он полностью компенсировал все потери энергии во входной цепи.

Как мы только что видели по цепи обратной связи, энергию нужно передавать даже с некоторым избытком, в расчете на то, что система авторегулировки сама будет поддерживать нужный уровень поступающего во входную цепь сигнала.

Кроме генератора с трансформаторной обратной связью, существуют еще две схемы автогенераторов с колебательным контуром (очень скоро мы познакомимся с генераторами, в которых контура нет). Это так называемые трехточечные схемы (рис. 115) с емкостной или же с индуктивной обратной связью.

image179

Рис. 115. Частота автоколебаний определяется параметрами электрической цепи, в частности индуктивностью и емкостью контура.

Автогенератор с колебательным контуром при правильном выборе режима транзистора дает напряжение, довольно близкое к синусоидальному. Однако синусоидальное напряжение можно получить и без контура – в так называемом RС‑генераторе. В самом упрощенном виде принцип действия этого генератора можно описать так: в нем создана цепь обратной связи, по которой проходят колебания разных частот, но только для одной из них выполняется условие фаз, и именно на этой частоте происходит самовозбуждение (рис. 116).

image180

Всегда существует такая частота, на которой угол сдвига фаз между током и напряжением, а значит, между напряжением, подводимым к RС‑цепочке, и напряжением, которое с нее «понимается, равен 60°. Если соединить последовательно три такие цепочки, то они создадут на какой‑то одной частоте (обратите внимание – только на одной определенной частоте!) общий угол сдвига фаз 180°. Именно на этой частоте в RC‑генераторе будет выполняться условие фаз, и именно эту частоту он будет генерировать. Если нужно изменить частоту генерации, то достаточно изменить данные RС‑цепочек. При уменьшении сопротивления R и емкости С условие фаз будет выполняться для более высокой частоты, а при их увеличении – для более низкой.

Теперь настал момент несколько отвлечься от основной темы и выполнить данное в конце предыдущего раздела обещание: объяснить, как возникает самовозбуждение в усилителе низкой частоты.

В усилителе НЧ всегда существует обратная связь. Это может быть отрицательная обратная связь, которую мы вводим для уменьшения искажений. Это может быть и неизвестно какая обратная связь, которая появляется неизвестно каким путем – через источники питания, через общие цепи смещения, через внутренние сопротивления транзисторов и т. д.

Вполне вероятно, что для какой‑то частоты, а может быть, и для целой группы частот, элементы обратной связи создадут такой сдвиг фаз, что она окажется положительной. А если еще при этом будет выполняться необходимое для самовозбуждения условие фаз, то усилитель, естественно, превратится в генератор.

Устранить самовозбуждение усилителя можно, например, так: нужно добиться, чтобы в нем не выполнялось условие связи. А для этого, в свою очередь, нужно снизить усиление одного или нескольких каскадов, уменьшив, например, у них сопротивления нагрузки. Правда, такой способ борьбы с самовозбуждением трудно признать удачным, и, прежде чем прибегать к этой крайней мере, стоит поискать другие пути. Например, ввести дополнительные развязывающие фильтры; зашунтировать батарею конденсатором большой емкости; отсоединить цепи отрицательной обратной связи или, по крайней мере, изменить данные их деталей; поочередно замыкать выходные цепи транзисторов конденсаторами сравнительно небольшой емкости, по нескольку тысяч пикофарад; пробовать увеличить емкость переходных конденсаторов, и др.

Генерация может возникать и в усилителе ВЧ, причем здесь для выполнения обоих условий самовозбуждения не так уж много надо. Сигнал нужной фазы и нужного уровня может, например, попадать из выходной цепи во входную через какую‑нибудь паразитную емкость, образованную двумя близко расположенными проводами. Или через общее магнитное поле двух неудачно расположенных катушек. К сожалению, генерация в усилителе ВЧ не всегда проявляет себя в виде специфического «писка». Может так случиться, что усилитель ВЧ возбуждается, на слух это не обнаруживается, а приемник в результате такого самовозбуждения не работает. Чтобы найти и устранить самовозбуждение усилителя ВЧ, нужно попробовать уменьшить усиление каскадов, а может быть, временно даже отключить один из них.

Устранение паразитного самовозбуждения усилителя во всех случаях – дело не простое и кропотливое. Оно требует терпения и, самое главное, понимания физических процессов, с которыми связано превращение усилителя в генератор.

Существует целый ряд генераторов, которые дают колебания не синусоидальной, а сложной формы, например прямоугольные импульсы, пилообразное напряжение, прерывистые, как бы модулированные колебания и т. п. Несмотря на изменение формы тока, принцип действия всех генераторов остается неизменным: положительная обратная связь приводит к тому, что электрические колебания, используя энергию коллекторной батареи, сами себя поддерживают, создают непрерывный процесс, в результате которого меняется коллекторный ток транзистора.

Один из весьма популярных генераторов колебаний сложной формы – это мультивибратор. Само его название, переведенное на русский язык, означает «генератор, создающий много разных колебаний». В распространенной схеме мультивибратора работают два транзистора, причем выход одного из них связан со входом другого (рис. 117).

image181

Рассмотрим несколько практических схем транзисторных генераторов.

Простейший генератор, выполненный по трехточечной схеме с индуктивной обратной‑связью (рис. 118–1 ), может заменить в вашей квартире электрический звонок.

image182

рис. 1181

Следующий генератор (рис. 118–2 ) дает прерывистые колебания звуковой частоты, чем‑то напоминающие сигналы нашего первого спутника, знаменитое «Бип‑бип‑бип…». Сам генератор звуковой частоты собран по трехточечной схеме с емкостной обратной связью. В качестве катушки L1 можно включить обмотку выходного или согласующего трансформатора.

image183

рис. 1182

Периодический заряд конденсатора используется в другом, очень простом двухтранзисторном генераторе (рис. 118–5 ), который дает два «сорта» электрических сигналов – пилообразный и близкий к прямоугольному.

image184

рис. 1185

Во многих практических схемах RС‑генераторов используются два транзистора, так как при этом появляется запас усиления и легче выполнить условие связи. Сигнал поступает с выхода второго транзистора на вход первого через обычную линию передачи, состоящую из трех RС‑цепочек, и каждая из них поворачивает фазу на 60°. При подсчете общего сдвига фаз нужно помнить, что на коллекторе и на базе одного и того же транзистора напряжения противофазны (когда на базе растет напряжение, на коллекторе оно уменьшается). Если же нагрузка включена в эмиттерную цепь (схема ОК), то на этой нагрузке напряжение совпадает по фазе с напряжением на базе (когда напряжение на базе растет, то увеличивается коллекторный ток и напряжение на эмиттерной нагрузке тоже увеличивается).

image185

рис. 1183

Транзистор Т2 не поворачивает фазу обратной связи, транзистор Т1 поворачивает фазу на 180° и на столько же поворачивает фазу линия передачи, состоящая из трех RС‑цепочек. Общий сдвиг фаз равен 360°, то есть равен нулю, и условие фаз выполняется.

Для приведенных на схеме данных частота колебаний составляет примерно 5–15 гц. Такие низкочастотные колебания используются в электромузыкальных инструментах для создания так называемого вибрато – своеобразной модуляции звука. Если уменьшить емкость и сопротивление RС‑цепочек, то генератор будет давать более высокую частоту.

image186

рис. 1186

Второй мультивибратор является своего рода ключом, подающим питание на первый, «звуковой» мультивибратор. В результате, так же как и в схеме рис. 118–2 звук получается прерывистым и напоминает сигналы первого спутника.

Периодическое включение «звукового» мультивибратора происходит потому, что он фактически является коллекторной нагрузкой одного из транзисторов (Т4 ) «ключевого» (правого по схеме) мультивибратора. Когда этот транзистор заперт, то на нагрузке, то есть на «звуковом» мультивибраторе, нет питающего напряжения (при I к = 0 напряжение Uн = Iк ·Rн также равно нулю). Когда же транзистор Т4 отпирается, то сопротивление его падает и напряжение источника почти полностью поступает на коллекторную нагрузку – на «звуковой» мультивибратор. Поскольку этот мультивибратор вместе с сигнальной лампочкой от карманного фонаря потребляет сравнительно большой ток – больше 100 лш, – то в схему пришлось ввести еще один, уже довольно мощный транзистор П201 (Т3 ). Он помогает транзистору Т4 выполнять трудную работу и легко пропускает нужный ток. Этот транзистор можно назвать полупроводниковым реле, которое, получив команду от своего управляющего транзистора (Т4 ), подает питание на «звуковой» мультивибратор.

Еще одно применение мультивибратора – электронный метроном (рис. 118–7 ), то есть генератор, отбивающий для музыканта ровный такт во время репетиций.

image187

рис. 1187

Очень простой мультивибратор можно собрать на транзисторах разной проводимости (рис. 118–4 ).

image188

рис. 1184

Частоту следования импульсов и их продолжительность здесь легко менять в широких пределах: с увеличением С1 и R1 возрастает длительность импульсов, а с увеличением С1 и R2 возрастает продолжительность пауз между ними. При указанных на схемах величинах частота повторения импульсов оказывается очень низкой – около одного импульса в секунду.

Простой электромузыкальный инструмент «поющий стакан» (рис. 111–4 ) можно собрать на основе так называемого блокинг‑генератора.

image189

рис. 1114

Так же как в знакомом нам генераторе синусоидальных колебаний с трансформаторной обратной связью (рис. 114), энергия из выходной цепи во входную передается через трансформатор. Однако самовозбуждение блокинг‑генератора не связано с собственными синусоидальными колебаниями в контуре. Колебания в блокинг‑генераторе возникают в результате довольно сложных лавинообразных процессов, которые приводят к периодическому запиранию и отпиранию транзистора. И, как это уже не раз бывало в других знакомых нам генераторах, частота колебаний определяется данными зарядной RС‑цепочки.

Если поднимать или опускать эти электроды или один из них, то объем воды, включенной в цепь, будет меняться, а значит, будет меняться и частота колебаний блокинг‑генератора. Элементы цепи подобраны таким образом, чтобы генератор работал в диапазоне звуковых частот и чтобы, перемещая один из электродов, можно было бы исполнять простейшие мелодии. В качестве Тр1 можно взять БТК (блокинг‑трансформатор кадровый) от любого телевизора.

На изменении сопротивления зарядной цепочки основано изменение тона в другом простейшем клавишном музыкальном инструменте (рис. 111–1 ).

image190

рис. 1111

Сопротивления, определяющие тот или иной тон, образованы двумя резисторами, например R’a и a чтобы подбором меньшего сопротивления легче было бы осуществить точную настройку инструмента. Еще проще подгонять частоту генератора, если в зарядную цепь включить переменные резисторы. Настройку генератора нетрудно сделать с помощью рояля. Ориентировочно сопротивление R’a + a должно составлять 150 + 200 ком, а каждое следующее должно быть меньше примерно на 10 ком.

Клавиши легко изготовить самому из тонкой и упругой стальной, латунной или гетинаксовой пластинки, закрепив на ней простейшие контакты (рис. 111–3 ).

image191

рис. 1113

После того как электромузыкальный инструмент настроен и налажен, можно попытаться сделать более богатым его звучание, ввести несколько цепей формирования тембра. Изменение тембра – это всегда изменение формы сигнала, или, иначе говоря, его искажение. Поэтому в систему формирования тембра могут, например, входить диоды, срезающие половину сигнала. Или диоды, работающие в режиме ограничения (рис. 27–9 ). Формирование тембра в электромузыкальных инструментах лишь расширяет наш список возможных «профессий» полупроводникового диода, но еще далеко не завершает этот список.

Источник

При каких условиях усилитель превращается в автогенератор при обратной связи равной 1

Генераторы гармонических колебаний представляют собой электронные устройства, формирующие на своем выходе периодические гармонические колебания при отсутствии входного сигнала. Генерирование выходного сигнала осуществляется за счет энергии источника питания. Со структурной точки зрения генераторы представляют собой усилители электрических сигналов, охваченные ПОС.

Внешний входной сигнал отсутствует. На входе усилителя действует только выходной сигнал ОС UOC. А на входе ОС действует UВХОС=UВЫХ. Поэтому коэффициент усиления такой схемы.

При выполнении этого условия любой усилитель, охваченный ПОС становится генератором, на выходе его появляются колебания, независимые от входного сигнала (автоколебания). Явление возникновения автоколебаний в усилителе называется самовозбуждением.

Условие возникновения автоколебаний можно разделить на две составляющие:

1) Условие баланса амплитуд: К∙β=1. Физический смысл: результирующее усиление в контуре, состоящем из последовательного соединения усилителя и цепи ОС должно быть равно единице. Если цепь ОС ослабляет сигнал, то усилитель должен на 100% компенсировать это ослабление. То есть если в любом месте разорвать контур ПОС и на вход подать сигнал от внешнего источника, то пройдя по контуру К∙β с выхода разрыва цепи ОС вернется сигнал точно такой же амплитуды, что был подан на вход разрыва.

2) Условие баланса фаз: arg(K·β)=0. Физический смысл: результирующий фазовый сдвиг, вносимый усилителем и цепью ОС должен быть равен нулю (или кратен 2π). То есть при подаче сигнала на разрыв, вернувшийся сигнал будет иметь точно такую же фазу. При выполнении этого условия ОС будет положительна.

Для существования автоколебаний необходимо одновременное выполнение этих условий. Если эти условия выполняются не для одной частоты, а для целого спектра частот, то генерируемый выходной сигнал будет сложным (не гармоническим). Для обеспечения синусоидальности выходного сигнала генератор должен генерировать сигнал только одной единственной частоты. Для этого необходимо, чтобы условия возникновения автоколебаний выполнялись для единственной частоты, которая и будет генерироваться. Для этого делают К или β частотно-зависимыми. Как правило β имеет максимум β0 на некоторой частоте ω0. Поэтому на ω0 и коэффициент усиления будет иметь максимум К0. Величины К0 и β0 обеспечивают такими, чтобы они удовлетворяли условиям возникновения автоколебаний. Тогда при отклонении частоты от ω0 и условия возникновения автоколебаний выполнятся не будут, что приведет к затуханию колебаний этой частоты и на выходе генератора будут только гармонические колебания частоты ω0.

В зависимости от того, каким способом в генераторе обеспечивается условие баланса фаз и амплитуд, различают генераторы:

3.1.1 Генератор LC-типа

Такой генератор строят на основе усилительного каскада на транзисторе, включая в его коллекторную цепь колебательный LC-контур. Для создания ПОС используется трансформаторная связь между обмотками W1 (имеющей индуктивность L) и W2 (рисунок 3.1.1.1).

Рисунок 3.1.1 Генератор LC-типа

Напряжение U2 является напряжением ОС. Оно связано с напряжением первичной обмотки W1 коэффициентом трансформации

Коэффициент трансформации в данном случае является коэффициентом передачи ОС, показывая какая часть напряжения передается на вход. Для выполнения баланса амплитуды на частоте ω0 должно выполнятся равенство

Из этого условия рассчитывается необходимое число витков вторичной обмотки, чем обеспечивается условие баланса амплитуд. Для обеспечения баланса фаз необходимо обеспечить соответствующее включение начал и концов обмоток, чтобы ОС была положительной. Емкость С1 выбирают такой, чтобы ее сопротивление на частоте генерации было незначительным по сравнению с R2. Это исключает влияние сопротивления делителя на ток во входной цепи транзистора, создаваемый напряжением ОС. Назначение RЭ и СЭ такое же, как в обычном усилительном каскаде. LC-генераторы, также как и LC-избирательные усилители применяют в области высоких частот, когда требуются небольшие величины L и имеется возможность обеспечить высокую добротность LC-контура. А на низких и инфранизких частотах, когда построение LC-генератора затруднительно, используют RС цепи тех же типов, что и для избирательных усилителей.

3.1.2 RC- генераторы

RC генераторы используют для задания частоты резисивно – емкостную связь. Основные два вида генераторов синусоидальных колебаний это: генератор с фазосдвигающей цепью и генератор на основе моста Вина. Генератор с фазосдвигающей цепью — это обычный усилитель с фазосдвигающей цепью обратной связи. На комбинации цепочек имеют место потери мощности, поэтому транзистор должен иметь достаточно высокий коэффициент усиления (рисунок 3.1.2.1).

Рисунок 3.1.2.1 Частота генератора рассчитывается по формуле

В этом генераторе для возникновения колебаний усилитель должен иметь бесконечно большое входное сопротивление и выходное сопротивление –равное 0.

Тогда, если конденсаторы и резисторы имеют равные реактивные и активные параметры, условием существования колебаний будет равенство коэффициента усиления числу 29. Такое усиление необходимо для компенсации затухания в фазосдвигающей цепочке. Фазовый угол этой цепочки на частоте колебаний равен 180°, а усилитель должен инвертировать сигнал, с тем, чтобы общий сдвиг фазы по всему контуру был равен 0 (условие генерации).

Частота колебаний генератора определяется выражением:

Источник

admin
Производства
Adblock
detector