при каких условиях трехфазная система называется симметричной

При каких условиях трехфазная система называется симметричной

Соединение фаз системы между собой (рис. 1б)) придает ей особые качества, благодаря которым многофазные системы ( в особенности трехфазные) получили исключительное распространение в области передачи и преобразования электрической энергии. Одним из очевидных преимуществ связанной системы (рис. 1) является сокращение с шести до четырех числа проводников, соединяющих источники с нагрузкой. При благоприятных обстоятельствах это число может быть уменьшено до трех. В дальнейшем мы отметим целый ряд других преимуществ, которым обладают связанные системы.

Аналогичные выражения можно написать и для токов и падений напряжения в симметричной трехфазной системе.

Многофазная система симметрична только тогда, когда в ней симметричны ЭДС, токи и напряжения. Если принять равными нулю внутренние сопротивления источников питания или включить их значения в сопротивления нагрузки, то условие симметрии системы сводится к симметрии ЭДС и равенству комплексных сопротивлений нагрузки. Это условие для трехфазной системы записывается в виде

В дальнейшем мы будем считать, что источники питания являются источниками ЭДС и использовать условия симметрии системы в виде выражений (1) и (2).

В многофазные системы объединяют источники ЭДС и нагрузки. Для обеспечения правильного соотношения сдвига фаз при соединения или связывании системы в общем случае необходимо определить выводы элементов, по отношению к которым выполняются условия (1). Они называются начало и конец фазы источника или нагрузки. Для источников многофазной системы принято за положительное направление действия ЭДС от начала к концу.

Источники питания и нагрузки в многофазных системах в общем случае могут быть связаны разными способами.

Построим векторную диаграмму для симметричной трехфазной системы фазных и линейных напряжений (рис. 3). В теории трехфазных цепей принято направлять вещественную ось координатной системы вертикально вверх.

Перейдем теперь к рассмотрению конкретных соединений трехфазных цепей.

I a = U A / Z a ; I b = U B / Z b и

Ток в нейтральном проводе можно определить по закону Кирхгофа для нейтральной точки нагрузки. Он равен

Векторные диаграммы для симметричной и несимметричной нагрузки в системе с нейтральным проводом приведены на рис. 4 б) и в).

При отсутствии нейтрального провода сумма токов в фазах нагрузки равна нулю I a + I b + I c =0. В случае симметричной нагрузки режим работы системы не отличается от режима в системе с нейтральным проводом.

При несимметричной нагрузке между нейтральными точками источника и нагрузки возникает падение напряжения. Его можно определить по методу двух узлов, перестроив для наглядности схему рис. 5 а). В традиционном для теории электрических цепей начертании она будет иметь вид рис. 5 б). Отсюда

Токи в фазах нагрузки можно определить по закону Ома

Векторные диаграммы для симметричной и несимметричной нагрузки приведены на рис. 6. Диаграммы симметричного режима (рис. 6 а)) ничем не отличаются от диаграмм в системе с нулевым проводом.

В трехфазных цепях нагрузка и источник могут быть соединены по-разному. В частности нагрузка, соединенная треугольником, может быть подключена к сети, в которой источник питания соединен звездой (рис. 7 а)).

При этом фазы нагрузки оказываются подключенными на линейные напряжения

Токи в фазах можно найти по закону Ома

I ab = U ab / Z ab ; I bc = U bc / Z bc ;

а линейные токи из уравнений Кирхгофа для узлов треугольника нагрузки

Векторы фазных токов нагрузки на диаграммах для большей наглядности принято строить относительно соответствующих фазных напряжений. На рис. 7 б) векторные диаграммы построены для случая симметричной нагрузки. Как и следовало ожидать, векторы фазных и линейных токов образуют симметричные трехфазные системы.

Трехфазная цепь является совокупностью трех однофазных цепей, поэтому ее мощность может быть определена как сумма мощностей отдельных фаз.

При соединении звездой активная мощность системы будет равна

P = P a + P b + P c = U a I a cos j a + U b I b cos j b + U c I c cos j c =

Q = Q a + Q b + Q c = U a I a sin j a + U b I b sin j b + U c I c sin j c =

Если нагрузка соединена треугольником, то активная и реактивная мощности будут равны

P = P ab + P bc + P ca = U ab I ab cos j ab + U bc I bc cos j bc + U ca I ca cos j ca =

Q = Q ab + Q bc + Q ca = U ab I ab sin j ab + U bc I bc sin j bc + U ca I ca sin j ca =

Полную мощность можно определить из треугольника мощностей как

При симметричной нагрузке мощности всех фаз одинаковы, поэтому полная мощность и ее составляющие для соединения звездой будут равны

При соединении нагрузки треугольником

Источник

Трехфазные симметричные цепи

Содержание:

Трехфазные симметричные цепи:

Основными приемниками электрической энергии как по количеству, так и по установленной мощности являются электродвигатели, применяемые для приведения в движение рабочих машин. Трехфазные асинхронные двигатели — наиболее простые, надежные и дешевые. Повсеместное применение их обусловило бурное развитие трехфазных систем — производства, передачи и распределения электрической энергии. Для этой цели применяются трехфазные генераторы, трансформаторы, линии передачи, распределительные сети.

Общие сведения о трехфазных системах

Многофазная система электрических цепей представляет собой совокупность электрических цепей, в которых действуют синусоидальные э. д. с. одинаковой частоты, сдвинутые относительно друг друга по фазе и создаваемые одним источником энергии. Соответствующая этому определению система из трех цепей называется трехфазной.

Если число витков в обмотках одинаково, то при вращении ротора во всех обмотках наводятся э. д. с. одинаковой величины. Начальные фазы этих э. д. с. сдвинуты относительно друг друга на 120° в соответствии с пространственным расположением обмоток.

419431

Трехфазная симметричная система э. д. с. — это совокупность трех э. д. с., имеющих одинаковую частоту и амплитуду, сдвинутых по фазе относительно друг друга на углы 120°.

Признаком нессимметрии трехфазной системы э. д. с. является неравенство амплитуд или неравенство углов сдвига фаз между каждой парой э. д. с.
На рис. 20.1 обмотки показаны в начальном положении (t = 0). При вращении ротора против часовой стрелки уравнения э. д. с. можно записать в следующем виде:
419435

419474
Рис. 20.2. Графики и векторная диаграмма симметричной системы э. д. с.

Несвязанная трехфазная система электрических цепей

Если каждую обмотку трехфазного генератора соединить со своим приемником, образуются три независимые цепи, каждая со своим током. Одна такая цепь с ее элементами (обмотка генератора, приемник, соединительные провода) в практике называется фазой. Термин «фаза» употреблен в своем подлинном значении, которое остается в силе и для трехфазных цепей.
В несвязанной трехфазной системе генератор с приемником энергии соединяется шестью проводами. Большое число соединительных проводов — основной недостаток несвязанных систем, которые поэтому и не применяются. Сокращение числа соединительных проводов достигается в связанных системах, где обмотки генератора, как и отдельные фазы приемника, электрически связаны между собой и образуют трехфазные цепи.
419486
Рис. 20.3. Несвязанная трехфазная система электрических цепей

Для этой цели выдающимся русским ученым М. О. Доливо-Добровольским (1862—1919) предложены две схемы соединения: звездой и треугольником, которые применяются и в настоящее время.

Трехфазная цепь называется симметричной, если комплексы сопротивлений всех ее фаз одинаковы. Когда в такой цепи действует симметричная система э. д. с., то токи в фазах равны по величине и сдвинуты по фазе на угол 120°, т. е. получается симметричная трехфазная система токов (рис. 20.3, б).

Нужно отметить, что приемник электрической энергии (электродвигатели, электролампы и т. п.) с генераторами, установленными на электростанциях, обычно непосредственно не связаны.

Соединение звездой при симметричной нагрузке

На рис. 20.4 показана связанная система при соединении фаз источника энергии и приемника звездой. Такую систему легко получить из несвязанной системы.
419500
Рис. 20.4. Связанные трехфазные системы электрических цепей при соединении звездой

Концы обмоток источника X, Y, Z соединяются в общую точку N, называемую нулевой точкой или нейтралью. Провода, соединяющие начала А, В и С обмоток источника с приемником (линейные провода), сохраняются; три провода, присоединенные к концам обмоток, заменяются одним. Благодаря этому в приемнике также образуется нулевая точка N’ (нейтраль). Нулевые точки источника энергии и приемника могут быть связаны проводом, который называется нулевым или нейтральным (рис. 20.4, а). В этом случае получается связанная четырехпроводная трехфазная система электрических цепей.
Далее будет показано, что в симметричных трехфазных цепях можно отказаться от нулевого провода, так как ток в нем равен нулю. В этом случае связь между источником и приемником, соединенными звездой, можно осуществлять по трехпроводной схеме (рис. 20.4, б).

Фазные напряжения

Разность потенциалов между линейными зажимами и нейтралью называется фазным напряжением (419506, 419507, 419508).

Фазные напряжения источника есть напряжения между началами и концами фаз, они отличаются от э. д. с. на величину падения напряжения в обмотках. Если сопротивлением обмоток можно пренебречь, то фазные напряжения источника равны соответствующим э. д. с. В симметричной системе они изображаются, так же как и э. д. с., тремя равными по величине векторами, сдвинутыми по фазе на 120° (рис. 20.5, а).
419523
Рис. 20.5. Векторные диаграммы напряжений при соединении обмоток источника звездой

В четырехпроводной и симметричной трехпроводной цепях фазные напряжения в приемнике меньше, чем в источнике, на величину падения напряжения в соединительных проводах. Если сопротивлением проводов можно пренебречь, то фазные напряжения в приемнике считаются такими же, как в источнике.

Линейные напряжения

Разность потенциалов между каждой парой линейных проводов называется линейным напряжением (419527, 419529, 419531).

Если принять потенциал нулевой точки N источника энергии равным нулю, то потенциалы его линейных зажимов:
419532 HehlBa5 419533419534
Линейные напряжения:
419537
419538
419539
Переходя к действующим величинам, напишем выражения в комплексной форме:
419540
Потенциалы линейных зажимов (или линейных проводов) в каждое мгновение отличаются друг от друга из-за наличия сдвига фаз между фазными напряжениями. Следовательно, линейные напряжения не равны нулю. Их можно определить аналитически по уравнениям (20.3) или графически с помощью векторной диаграммы рис. 20.5.

Из векторной диаграммы видно, что при симметричной системе фазных напряжений система линейных напряжений тоже симметрична: 419548 419545 419531равны по величине и сдвинуты относительно друг друга на 120°. Вместе с тем при прямой последовательности фаз звезда векторов линейных напряжений опережает на 30° звезду векторов фазных напряжений.

Векторную диаграмму удобно выполнить топографической, тогда каждой точке цепи соответствует определенная точка на диаграмме (рис. 20.5, б). Вектор, проведенный между двумя точками топографической диаграммы, выражает по величине и фазе напряжение между одноименными точками цепи.
Действующая величина линейных напряжений легко определяется по векторной диаграмме из треугольника, образованного векторами двух фазных и одного линейного напряжения, например ANB:
419553
Обозначая все фазные напряжения Uф, а линейные напряжения Uл получим общее соотношение между линейными и фазными напряжениями в симметричной системе
419555 IEZ2Znj

Фазные и линейные токи

В связанной системе (см. рис. 20.4, а), так же как и в несвязанной, каждая фаза представляет собой замкнутую цепь.

В соответствии с положительным направлением э. д. с. в обмотках источника положительное направление токов в линейных проводах — от источника к приемнику, а в нулевом проводе — от приемника к источнику.

В трехфазных цепях различают фазные и линейные токи.
Токи в фазах источника и приемника называют фазными (на рис. 20.4 i’A, i’B, i’С; общее обозначение iф). Токи в линейных проводах называют линейными (iA, iB, iС; общее обозначение iл).

При соединении звездой в точках перехода из источника в линию и из линии в приемник нет разветвлений, поэтому фазные и линейные токи одинаковы между собой в каждой фазе:
422491

Задача 20.3.

В каждой фазе трехфазного генератора наводится э. д. с. Е = 127 В. Начертить схему, построить векторную диаграмму и определить линейные напряжения при холостом ходе, если в общую точку соединены зажимы: а) X, Y, Z; б) X, Y, C; в) X, B, Z; г) X, B, C; д)A, B, C. Буквами A, B, C обозначены начала, а X, Y, Z — концы обмоток.

422506

Рис. 20.6. К задаче 20.3

422507

Рис. 20.7. К задаче 20.3

Решение. Схема генератора и векторная диаграмма при соединении в общую точку зажимов X, Y, Z показаны на рис. 20.6. Из векторной диаграммы видно, что линейные напряжения одинаковы:
422516 e57uJvF

При соединении в общую точку зажимов X, Y, C (рис. 20.7) фаза С включена началом в нулевой точке, поэтому вектор фазного напряжения этой фазы изображен на векторной диаграмме в положении, повернутом на 180° к нормальному, и обозначен UZ. Из векторной диаграммы следует: UAB = 220 В; UBZ = 127; UZA = 127 В.

Соединение треугольником при симметричной нагрузке

При соединении треугольником из трех обмоток источника образуется замкнутый на себя контур (рис. 20.8, а). Точно так же замкнутый контур создается из трех фаз приемника.

Общие точки двух фаз источника и двух фаз приемника соединяются между собой линейными проводами. Так образуется связанная трехфазная трехпроводная система, в которой каждая обмотка источника соединена с соответствующей фазой приемника парой линейных проводов, каждый из которых обеспечивает такую связь в двух смежных фазах.

422543

Рис. 20.8. Связанная трехфазная система электрических цепей при соединении треугольником

Фазные и линейные напряжения

Соединение нескольких обмоток источника в замкнутый контур возможно лишь в том случае, если сумма всех э. д. с. этого контура равна нулю.
Это требование выполняется при таком порядке соединения, когда конец предыдущей обмотки соединяется с началом следующей. Например, конец X фазы А соединен с началом фазы В в общей точке ХВ, конец Y фазы В соединен с началом фазы С в общей точке YС и конец Z фазы С соединен с началом фазы А в общей точке ZА.

Симметричная система э. д. с., действующих в контуре, имеет сумму, равную нулю (рис. 20.8, б): 423257

В этом случае при холостом ходе источника ток в его обмотках отсутствует.
При несимметрии системы э. д. с. их сумма не равна нулю, поэтому уже при холостом ходе в обмотках источника образуется ток, который может быть большим даже при малой несимметрии, так как сопротивление обмоток незначительно.

422554
Рис. 20.9. Неправильное соединение треугольником обмоток источника

422555
Рис. 20.10. Векторные диаграммы напряжений при соединении обмоток источника треугольником.

При неправильном включении обмоток, когда две соседние фазы соединены началами или концами (рис. 20.9), сумма э. д. с. в контуре равна удвоенной величине э. д. с. фазы.
Из схемы соединения треугольником видно, что фазные и линейные напряжения совпадают, так как конец одной фазы соединен с началом другой:
423258
Векторную диаграмму напряжений можно построить в виде звезды или в виде замкнутого треугольника векторов (рис. 20.10). В последнем случае диаграмма является топографической.

Фазные и линейные токи

Каждая фаза приемника присоединении треугольником находится под линейным напряжением. Этим обусловлено наличие в приемнике фазных токов iAB, iBC, iСA, положительное направление которых на схеме рис. 20.8 выбрано соответственно положительному направлению э. д. с. в фазах источника.

Точки А’, В’, С’ приемника, так же как и точки А, В, С источника, являются электрическими узлами, поэтому фазные токи отличаются от линейных iA, iB, iС. Для узловых точек А, В, С можно написать уравнения в комплексной форме по первому закону Кирхгофа:
423265
При симметричной нагрузке токи во всех фазах одинаковы. Звезда векторов линейных токов сдвинута относительно звезды фазных токов на 30° против вращения векторов, если последовательность фаз — прямая (рис. 20.11, а).
Действующая величина линейных токов определяется по векторной диаграмме из равнобедренного треугольника, образованного векторами двух фазных и одного линейного токов, например из треугольника ANC (рис. 20.11, б):
423274

423278

Рис. 20.11. Векторные диаграммы токов при соединении приемников треугольником

Обозначив все фазные токи Iф, а линейные токи Iл, получим общее соотношение между линейными и фазными токами в симметричной цепи:423285 FyuJPbK

Расчет симметричных трехфазных цепей

Формулы (20.4) и (20.8), как уже отмечено, справедливы только для симметричных систем напряжений и токов.

Трехфазные электродвигатели имеют три одинаковые фазы обмотки, и создаваемая ими электрическая нагрузка симметрична. Нессимметрию создают однофазные приемники, например лампы электрического освещения и другие бытовые электроприемники. Если при проектировании осветительную нагрузку разделить между фазами поровну, то в процессе эксплуатации нагрузка, как правило, будет несимметричной из-за неодновременности включения ламп.

При большом числе однофазных приемников нессимметрия нагрузки, связанная с неодновременностью их включения, невелика, поэтому линии с напряжением 3; 6 кВ и выше, предназначенные для электроснабжения промышленных предприятий или определенного района (фидерные линии), выполняют трехпроводными независимо от схемы соединения групп приемников (звездой или треугольником).

Цель расчета состоит в определении токов в фазах приемника и проводах линии, а также мощности приемника в целом и в каждой фазе. Может быть поставлена и обратная задача.

Соединение звездой

В симметричной цепи комплексы сопротивлений фаз приемника одинаковы 423368и между зажимами приемника действует симметричная система линейных напряжений при любой схеме соединения источника (звездой или треугольником).

Поэтому на расчетной схеме источник (генератор или трансформатор) не показывают и говорят, что приемник включен в трехфазную сеть (см. рис. 21.3, о). (20.8)
В симметричной цепи достаточно провести расчет одной фазы, так как токи и мощности во всех фазах одинаковы.
При известном линейном напряжении Uл фазное напряжение
423369
Фазный ток, равный линейному,
423370

Соединение треугольником

При соединении треугольником фазное напряжение 423371
Ток в фазе
423372
Линейный ток
423373

Определение мощности

Мощность в каждой фазе трехфазной цепи определяется теми же формулами, которые применялись при расчете однофазных цепей.
При симметричной нагрузке фазные напряжения, токи и углы сдвига фаз между ними в каждой фазе одинаковы, поэтому при определении мощности цепи можно написать общие выражения:
423374
Учитывая, что при соединении звездой
423375423376
а при соединении треугольником
423377423378
мощности можно определять через линейные величины напряжений и токов:
423380
При решении задач символическим методом мощность определяется, так же как и в однофазных цепях, произведением соответствующих комплекса напряжения и сопряженного комплекса тока.

Задача 20.9.

К трехфазному трансформатору с линейным напряжением на вторичной обмотке 380 В включены звездой электрические лампы мощностью 40 Вт каждая (по 100 шт. в фазе) и трехфазный двигатель мощностью 10 кВт, имеющий к. п. д. 85%, 423381
Пренебрегая сопротивлением проводов, определить токи в линии.
Решение. Заданная нагрузка симметрична, так как в каждой фазе включены одинаковые по величине и характеру приемники: осветительная нагрузка 423382и одна фаза двигателя.

423383
Рис. 20.12. К задаче 20.9

Расчет можно вести на одну фазу:
423384
Ток осветительной нагрузки
423385
Ток в фазе двигателя
423386
Для нахождения тока в линии нужно сложить токи ламп и двигателя. Эти токи по фазе не совпадают, поэтому разложим их на активные и реактивные составляющие и сложим одноименные составляющие.
Ток в лампах совпадает по фазе с напряжением, поэтому реактивный ток ламп I = 0, активный ток I = I0 = 18,2 А.
Активный ток в фазе двигателя
423388
Реактивный ток в фазе двигателя
423389
Общий активный ток. в линии
423390
Общий реактивный ток в линии
423391
Ток в линии
423392

Задача 20.12.

Приемник электрической энергии, соединенный треугольником, имеет активное сопротивление R = 12 Ом и емкость С = 199 мкФ. Определить: токи в фазах приемника и в линии, с помощью которой приемник подключен к сети с линейным напряжением U = 220 В и частотой f = 50 Гц; активную, реактивную и полную мощности приемника.
Решение.
Емкостное сопротивление фазы приемника
423393
Полное сопротивление фазы приемника
423394
Фазное напряжение приемника
423396
Фазный ток
423408
Линейный ток
423399
Мощность приемника:
активная
423409
реактивная
423410 ggOhAgO
полная
423411

Симметричный режим работы трехфазной цепи

Расчет трехфазной цепи, так же как и расчет всякой сложной цепи, ведется обычно в комплексной форме. Ввиду того что фазные э. д. с. генератора сдвинуты друг относительно друга на 120°, для краткости математической записи применяется фазовый оператор — комплексная величина

306444

Умножение вектора на оператор а означает поворот вектора на 120° в положительном направлении (против хода часовой стрелки).

Соответственно умножение вектора на множитель а2 означает поворот вектора на, 240° в положительном направлении или, что то же, поворот его на 120° в отрицательном направлении.

306446

Если э. д. с. фазы А равна 306448то э. д. с. фаз В и С равны соответственно:

306449

В простейшем случае симметричного режима работы трехфазной цепи, когда генератор и нагрузка соединены звездой (рис. 12-9, а), векторная диаграмма э. д. с. и токов имеет вид, показанный на рис. 12-9, б.

Ток в каждой фазе отстает от э. д. с. той же фазы на

угол 306454 t2BMGrGгде r и х — активное и реактивное сопротивления фаз.

* Кроме того, применяется понятие «фазное напряжение в данном сечении» трехфазной цепи по отношению к какой-либо точке, принимаемой за нуль, например земле, нулевой точке генератора или искусственной нулевой точке.

Ток в фазе А находят так же, как в однофазной цепи, потому что нейтральные точки генератора и нагрузки в симметричном режиме могут быть соединены как имеющие одинаковые потенциалы:

306465
Соответственно токи в фазах В и С через ток 306468

306471

Наличие нейтрального провода «не вносит при симметричном режиме никаких изменений, так как сумма токов трех фаз равна нулю и ток в нем отсутствует:

306472

Таким образом, при симметричном режиме работы трехфазной цепи задача сводится к расчету одной из фаз
306473

аналогично расчету однофазной цепи. При этом сопротивление обратного (нейтрального) провода не учитывается, так как ток в нем и соответственно падение напряжения на нем отсутствуют.

По мере удаления от генератора фазные напряжения, определяемые падениями напряжения до нейтральной точки нагрузки, изменяются по модулю (обычно убывают) и по фазе. Линейные напряжения определяются как разности соответствующих фазных напряжений, например: 306475 306476В любом месте трехфазной линии при симметричном режиме соблюдается следующее соотношение между модулями линейных и фазных напряжений:

306478

306485

т. e. 306488 O4MwebQопережает по фазе 306492а на 30°, причем модуль 306495раз превышает 306494

В случае соединения треугольником линейные токи определяются в соответствии с первым законом Кирхгофа как разности фазных токов и при симметричном режиме соблюдается соотношение306497

Соединение фаз генератора или нагрузки треугольником должно быть для расчета заменено эквивалентным соединением фаз звездой; вследствие этого расчет трехфазной цепи с соединением фаз треугольником приводится в конечном итоге к расчету эквивалентной трехфазной цепи с соединением фаз звездой.

Активная мощность симметричной трехфазной нагрузки равна:

306506

Ввиду того что при соединении нагрузки звездой 306508а при соединении нагрузки треугольником306510активная мощность трехфазной цепи независимо от вида соединения выражается через линейные напряжения и ток следующим образом:

306511

здесь 306513— угол сдвига фазного тока относительно одноименного фазного напряжения.

Аналогичным образом для реактивной и полной мощностей симметричной трехфазной нагрузки имеем:

306553

Приведенные выражения не означают, что при пересоединении нагрузки со звезды на треугольник (или наоборот) активная и реактивная мощности не изменяются. При пересоединении нагрузки со звезды на треугольник при заданном линейном напряжении фазные токи возрастут в 306556раз, в линейный ток — в 3 раза и поэтому мощность возрастет в 3 раза.

306560

Если нейтральная точка симметричной трехфазной нагрузки выведена, то измерение активной мощности может быть осуществлено одним ваттметром, включенным по схеме рис. 12-10, а (одноименные или так называемые генераторные выводы последовательной и параллельной цепей ваттметра отмечены на рис. 12-10, а звездочками). Утроенное показание ваттметра равно суммарной активной мощности трех фаз.

Если нейтральная точка не выведена или нагрузка соединена треугольником, то можно воспользоваться схемой рис. 12-10, б, где параллельная цепь ваттметра и два добавочных активных сопротивления 306565равные по величине сопротивлению параллельной цепи ваттметра, образуют искусственную нейтральную точку 306569

* Следует заметить, что здесь применим только электродинамический или ферродинамический ваттметр, сопротивление параллельной цепи которого является чисто активным. Индукционный ваттметр неприменим по той причине, что сопротивление параллельной цепи такого ваттметра имеет реактивное сопротивление; для создания искусственной нейтральной точки в этом случае потребовались бы реактивные добавочные сопротивления.

Для получения суммарной мощности, как и в предыдущем случае, показание ваттметра утраивается.

306580

На рис. 12-11 показан способ измерения реактивной мощности в симметричной трехфазной цепи при помощи одного ваттметра: последовательная цепь ваттметра включена в фазу А, а параллельная — между фазами В и С, причем генераторные выводы ваттметра присоединены к фазам А и В.

Показание ваттметра в этом случае равно:

306574

Для получения суммарной реактивной мощности показание умножается на 306576

Разделив активную мощность на полную мощность, получим:

306577.
Пример 12-1. Определить ток в генераторе при симметричном режиме работы трехфазной цепи, представленной на рис, 12-12, а.

306579

Сопротивления 306582соединенные треугольником, заменяются эквивалентной звездой из сопротивлений 306583

При симметричном режиме нейтральные точки генератора и нагрузки, как было указано выше, могут быть объединены. Тогда режим работы каждой фазы, например фазы А, может быть рассмотрен в однофазной расчетной схеме (рис, 12-12, б),

Результирующее сопротивление цепи одной фазы равно:

306587
Искомый ток в фазе А306632

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

admin
Производства
Adblock
detector