при каких условиях происходит плавление твердого тела

При каких условиях происходит плавление твердого тела

Плавление — это процесс превращения вещества из твёрдого состояния в жидкое.

Наблюдения показывают, что если измельчённый лёд, имеющий, например, температуру –10 °С, оставить в тёплой комнате, то его температура будет повышаться. При 0 °С лёд начнет таять, а температура при этом не будет изменяться до тех пор, пока весь лёд не превратится в жидкость. После этого температура образовавшейся изо льда воды будет повышаться.

Это означает, что кристаллические тела, к которым относится и лед, плавятся при определённой температуре, которую называют температурой плавления. Важно, что во время процесса плавления температура кристаллического вещества и образовавшейся в процессе его плавления жидкости остаётся неизменной.

В описанном выше опыте лёд получал некоторое количество теплоты, его внутренняя энергия увеличивалась за счёт увеличения средней кинетической энергии движения молекул. Затем лёд плавился, его температура при этом не менялась, хотя лёд получал некоторое количество теплоты. Следовательно, его внутренняя энергия увеличивалась, но не за счёт кинетической, а за счёт потенциальной энергии взаимодействия молекул. Получаемая извне энергия расходуется на разрушение кристаллической решетки. Подобным образом происходит плавление любого кристаллического тела.

Аморфные тела не имеют определённой температуры плавления. При повышении температуры они постепенно размягчаются, пока не превратятся в жидкость.

Кристаллизация

Кристаллизация — это процесс перехода вещества из жидкого состояния в твёрдое состояние. Охлаждаясь, жидкость будет отдавать некоторое количество теплоты окружающему воздуху. При этом будет уменьшаться её внутренняя энергия за счёт уменьшения средней кинетической энергии его молекул. При определённой температуре начнётся процесс кристаллизации, во время этого процесса температура вещества не будет изменяться, пока всё вещество не перейдет в твёрдое состояние. Этот переход сопровождается выделением определённого количества теплоты и соответственно уменьшением внутренней энергии вещества за счёт уменьшения потенциальной энергии взаимодействия его молекул.

Таким образом, переход вещества из жидкого состояния в твёрдое состояние происходит при определённой температуре, называемой температурой кристаллизации. Эта температура остаётся неизменной в течение всего процесса плавления. Она равна температуре плавления этого вещества.

%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D0%BA %D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D0%B8

На рисунке приведён график зависимости температуры твёрдого кристаллического вещества от времени в процессе его нагревания от комнатной температуры до температуры плавления, плавления, нагревания вещества в жидком состоянии, охлаждения жидкого вещества, кристаллизации и последующего охлаждения вещества в твёрдом состоянии.

Удельная теплота плавления

Различные кристаллические вещества имеют разное строение. Соответственно, для того, чтобы разрушить кристаллическую решётку твёрдого тела при температуре его плавления, необходимо ему сообщить разное количество теплоты.

Удельная теплота плавления — это количество теплоты, которое необходимо сообщить 1 кг кристаллического вещества, чтобы превратить его в жидкость при температуре плавления. Опыт показывает, что удельная теплота плавления равна удельной теплоте кристаллизации.

Удельная теплота плавления обозначается буквой λ. Единица удельной теплоты плавления — [λ] = 1 Дж/кг.

Значения удельной теплоты плавления кристаллических веществ приведены в таблице. Удельная теплота плавления алюминия 3,9*10 5 Дж/кг. Это означает, что для плавления 1 кг алюминия при температуре плавления необходимо затратить количество теплоты 3,9*10 5 Дж. Этому же значению равно увеличение внутренней энергии 1 кг алюминия.

Эта же формула используется при вычислении количества теплоты, выделяющегося при кристаллизации жидкости.

207

Конспект урока «Плавление и кристаллизация. Удельная теплота плавления».

Источник

Агрегатные состояния вещества. Плавление и отвердевание кристаллических тел

Урок 9. Физика 8 класс (ФГОС)

20210413 vu tg sbscrb2

9

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

20210706 unblock slide1

20210706 unblock slide2

20210706 unblock slide3

Конспект урока «Агрегатные состояния вещества. Плавление и отвердевание кристаллических тел»

Вы хорошо знаете, что одно и то же вещество может находиться в трёх агрегатных состояниях: в твёрдом, жидком и газообразном. Эти состояния вещества различаются расположением, характером движения и взаимодействия молекул. При некоторых условиях, например при определённых значениях температуры и давления, вещества могут переходить из одного агрегатного состояния в другое. Самым известным таким примером служат вода, лёд и пар.

image001

Переходы вещества из одного агрегатного состояния в другое называют агрегатными превращениями.

Многие природные явления обусловлены естественным изменением агрегатных состояний различных веществ. Например, хорошо знакомый вам большой круговорот воды в природе, объясняется изменением агрегатного состояния воды.

Конечно же у вас могут возникнуть вопросы: при каких условиях происходит переход вещества из одного агрегатного состояния в другое? Или как объяснить изменение агрегатного состояния вещества?

Давайте попытаемся найти ответы на эти и другие вопросы. Вы уже знаете, что молекулы одного и того же вещества не меняются с изменением его агрегатного состояния. А меняется их расположение, характер движения и взаимодействия.

image002

Твёрдое тело Жидкость Газ

Вспомним, что в твёрдых телах молекулы плотно прилегают друг к другу и могут только колебаться около своих положений равновесия.

image003

Из-за сильного взаимодействия в твёрдом веществе частиц друг с другом, и отсутствие у них подвижности, приводит к тому, что твёрдые тела сохраняют свою форму и объём.

В жидкостях, молекулы расположены немного дальше друг от друга. Поэтому они совершают беспорядочные колебания и вращения в одном положении, а также могут перемещаться друг относительно друга.

image004

Наличие сил притяжения между молекулами обеспечивает жидкости сохранение объёма, а перемещения — текучесть.

В газах молекулы расположены на значительном расстоянии друг от друга. Поэтому молекула в газе двигается свободно до момента столкновения с другой молекулой или стенкой сосуда, в котором он находится.

image005

А если газу не мешают стенки сосуда, то его молекулы разлетаются в различных направлениях.

Давайте рассмотрим несколько примеров о том, как люди используют изменение агрегатных состояний веществ в своих целях. Существует такое устройство, как паровая турбина.

image006

Это тепловой двигатель, в котором за счёт разности давлений энергия пара преобразуется в механическую энергию.

Также, чтобы придать ту или иную форму металлическим изделиям, люди сначала приводят металлы к жидкому состоянию, а потом остужают их.

image007

А, например, сжиженный газ используется в холодильных установках.

image008

На прошлых уроках мы с вами говорили о том, что при теплопередаче изменяется внутренняя энергия тела. И чаще всего это связано с изменением его температуры. Но при этом агрегатное состояние вещества остаётся прежним. Однако существуют процессы, при которых внутренняя энергия вещества при получении теплоты увеличивается, а температура остаётся постоянной.

К таким процессам относятся плавление и кристаллизация (отвердевание). Изучим эти процессы с помощью опыта.

Возьмём калориметр, во внутренний сосуд которого положим немного измельчённого льда при температуре минус десять градусов по Цельсию.

Опустим в него термометр и оставим на столе. Будем следить за изменением температуры льда и процессами, которые с ним происходят. Наблюдения показывают, что какое-то время лёд остаётся в твёрдом состоянии, а его температура постепенно повышается.

image009

При температуре в 0 о С лёд начинает плавиться, в сосуде появляется вода, но температура льда остаётся неизменной. И она не будет изменяться до тех пор, пока весь лёд не перейдёт в жидкое состояние. Только после этого температура образовавшейся изо льда воды начинает повышаться. И это будет происходить до тех пор, пока она не станет равной комнатной температуре.

Такой переход вещества из твёрдого состояния в жидкое называют плавлением.

Из наблюдений можно сделать несколько важных выводов. Во-первых, лёд начинает плавиться при определённой температуре. Важно отметить, что лёд находится в кристаллическом состоянии. Следовательно, процесс плавления кристаллических тел происходит при определённой температуре, которую называют температурой плавления.

Во-вторых, температура льда и образовавшейся воды во время всего процесса плавления остаётся неизменной. Таким образом, во время процесса плавления кристаллического вещества его температура остаётся постоянной.

Процесс плавления любых кристаллических тел протекает аналогично рассмотренному процессу плавления льда. То есть чтобы расплавить твёрдое кристаллическое тело, необходимо нагреть его до температуры плавления и в дальнейшем сообщать ему энергию до тех пор, пока всё оно не превратится в жидкость. Исключение составляют те вещества, которые меняют свой химический состав или сразу превращаются в газ.

Различные кристаллические вещества имеют разную температуру плавления.

image010

Из таблицы видно, что температуры плавления различных веществ лежат достаточно в широком диапазоне.

Температуру плавления приходится учитывать при создании бытовой и промышленной техники. Так, например, спирали лампочек и нагревательных элементов делают из тугоплавких материалов. А в самолётостроении, в ракетной и космической промышленности используют материалы с очень высокой температурой плавления.

Но вернёмся к нашему опыту с калориметром. Поместим его, вместе с находящейся в нём водой, в морозильную камеру и проследим за изменением температуры воды.

image011

Заметим, что сначала вода будет охлаждаться до 0 о С, отдавая при этом некоторое количество теплоты окружающему воздуху. При этом будет уменьшаться и её внутренняя энергия за счёт уменьшения средней кинетической энергии движения молекул. Когда температура воды станет равной 0 о С, она начнёт превращаться в лёд. При этом температура воды не будет изменяться до тех пор, пока вся она не перейдёт в твёрдое состояние.

Процесс перехода вещества из жидкого состояния в твёрдое называют отвердеванием или кристаллизацией.

Данный процесс сопровождается выделением определённого количества теплоты и соответственно уменьшением внутренней энергии вещества за счёт уменьшения потенциальной энергии взаимодействия его молекул.

Температура, при которой тело отвердевает или кристаллизуется, называется температурой отвердевания или кристаллизации. Эта температура остаётся неизменной во время всего процесса кристаллизации.

Из опыта следует, что для кристаллических тел температура кристаллизации равна температуре плавления.

В заключении отметим, что понятия «температура плавления» и «температура кристаллизации» применимы не ко всем веществам. Например, согрев рукой кусок холодного твёрдого пластилина, мы ощутим постепенное уменьшение его твёрдости. Продолжая нагрев на каком-либо нагревателе, можно перевести пластилин в состояние вязкой жидкости. Но мы не обнаружим определённой температуры плавления. То же самое происходит при нагревании стекла. Наблюдается непрерывное уменьшение твёрдости стекла и увеличение его текучести. Причина такого поведения указанных веществ в отсутствии в их строении правильного повторяющегося расположения частиц. Этот особый вид тел принято называть аморфными телами. Помимо стекла и пластилина, к ним ещё относятся, например, твёрдая смола, сургуч, различного вида пластмассы и так далее.

Поэтому помните, что понятия «температура плавления» и «температура кристаллизации» применимы лишь к телам, имеющим кристаллическое строение.

Источник

Молекулярная физика. Плавление и кристаллизация.

Переход вещества из твердого кристаллического состояния в жидкое называется плавлением. Чтобы расплавить твердое кристаллическое тело, его нужно нагреть до определенной температуры, т. е. подвести тепло. Температура, при которой вещество плавится, называется температурой плавления вещества.

Обратный процесс — переход из жидкого состояния в твердое — происходит при понижении температуры, т. е. тепло отводится. Переход вещества из жидкого состояния в твердое называется отвердеванием, или кристал лизацией. Температура, при которой вещество кристаллизуется, называется температурой кристалли зации.

Опыт показывает, что любое вещество кристаллизуется и плавится при одной и той же температуре.

На рисунке представлен график зависимости температуры кристаллического тела (льда) от времени нагревания (от точки А до точки D) и времени охлаждения (от точки D до точки K). На нем по горизонтальной оси отложено время, а по вертикальной — температура.

875454559fd44f012dc7.05360074

Вид рассмотренного графика объясняется следующим образом. На участке АВ благодаря подводимому теплу средняя кинетическая энергия молекул льда увеличивается, и температура его повышается. На участке ВС вся энергия, получаемая содержимым колбы, тратится на разрушение кристаллической решетки льда: упорядоченное пространственное расположение его молекул сменяется неупорядоченным, меняется расстояние между молекулами, т.е. происходит перестройка молекул таким образом, что вещество становится жидким. Средняя кинетическая энергия моле­кул при этом не меняется, поэтому неизменной остается и температура. Дальнейшее увеличение температуры расплавленного льда-воды (на участке CD) означает увеличение кинетической энер­гии молекул воды вследствие подводимого горелкой тепла.

При охлаждении воды (участок DE) часть энергии у нее отбирается, молекулы воды движутся с меньшими скоростями, их средняя кинетическая энергия падает — температура уменьшается, вода охлаждается. При 0°С (горизонтальный участок EF) молекулы начинают выстраиваться в определенном порядке, образуя кристаллическую решетку. Пока этот процесс не завершится, температура вещества не изменится, несмотря на отводимое тепло, а это означает, что при отвер­девании жидкость (вода) выделяет энергию. Это как раз та энергия, которую поглотил лед, пре­вращаясь в жидкость (участок ВС). Внутренняя энергия у жидкости больше, чем у твердого тела. При плавлении (и кристаллизации) внутренняя энергия тела меняется скачком.

Металлы, плавящиеся при температуре выше 1650 ºС, называют тугоплавкими (титан, хром, молибден и др.). Самая высокая температура плавления среди них у вольфрама — около 3400 °С. Тугоплавкие металлы и их соединения используют в качестве жаропрочных материалов в самолетостроении, ракетостроении и космической технике, атомной энергетике.

Подчеркнем еще раз, что при плавлении вещество поглощает энергию. При кристаллизации оно, наоборот, отдает ее в окружающую среду. Получая определенное количество теплоты, выделяющееся при кристаллизации, среда нагревается. Это хорошо известно многим птицам. Неда­ром их можно заметить зимой в морозную погоду сидящими на льду, который покрывает реки и озера. Из-за выделения энергии при образовании льда воздух над ним оказывается на несколько градусов теплее, чем в лесу на деревьях, и птицы этим пользуются.

Наличие определенной точки плавления — это важный признак кристаллических веществ. Именно по этому признаку их можно легко отличить от аморфных тел, которые также относят к твердым телам. К ним, в частности, относятся стекла, очень вязкие смолы, пластмассы.

Аморфные вещества (в отличие от кристаллических) не имеют определенной температуры плавления — они не плавятся, а размягчаются. При нагревании кусок стекла, например, снача­ла становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает менять свою форму под действием собственной тяжести. По мере нагревания густая вязкая масса принимает форму того сосуда, в котором лежит. Эта масса сначала густая, как мед, затем — как сметана и, наконец, становится почти такой же маловязкой жидкостью, как вода. Однако указать определенную температуру перехода твердого тела в жидкое здесь невозможно, поскольку ее нет.

Причины этого лежат в коренном отличии строения аморфных тел от строения кристаллических. Атомы в аморфных телах расположены беспорядочно. Аморфные тела по своему строению напоминают жидкости. Уже в твердом стекле атомы расположены беспорядочно. Значит, повы­шение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения. Поэтому стекло размягчается постепенно и не обнаруживает резкого перехода «твердое—жидкое», характерного для перехода от расположения молекул в строгом порядке к беспорядочному.

Теплота плавления — это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полностью перевести его из твердого кристаллического состояния в жидкое. Теплота плавления равна тому количеству теплоты, которое выделяется при кристалли­зации вещества из жидкого состояния. При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энер­гии его молекул. Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.

Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить 332 Дж энергии, а для того чтобы расплавить 1 кг свинца — 25 кДж.

Физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой 1 кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления.

Удельную теплоту плавления измеряют в джоулях на килограмм (Дж/кг) и обозначают греческой буквой λ (лямбда).

Удельная теплота кристаллизации равна удельной теплоте плавления, поскольку при кристаллизации выделяется такое же количество теплоты, какое поглощается при плавлении. Так, например, при замерзании воды массой 1 кг выделяются те же 332 Дж энергии, которые нужны для превращения такой же массы льда в воду.

Чтобы найти количество теплоты, необходимое для плавления кристаллического тела произвольной массы, или теплоту плавления, надо удельную теплоту плавления этого тела умножить на его массу:

Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой m, следует пользоваться той же формулой, но со знаком «минус»:

Теплота сгорания (или теплотворная способность, калорийность) — это количество теплоты, выделяющейся при полном сгорании топлива.

Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обыч­ное топливо (уголь, нефть, бензин) содержит углерод. При горении атомы углерода соединяются с атомами кислорода, содержащегося в воздухе, в результате чего образуются молекулы углекислого газа. Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.

Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.

Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называется удельной теплотой сгорания топлива. Удельную теплоту сгорания обозначают буквой q и измеряют в джоулях на килограмм (Дж/кг).

Количество теплоты Q, выделяющееся при сгорании m кг топлива, определяют по формуле:

Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.

Источник

Плавление и отвердевание кристаллических тел

Содержание

Одно и то же вещество может находиться в трех разных агрегатных состояниях в зависимости от условий. Например, лед, вода и водяной пар (рисунок 1).

Соответственно, это одно вещество в твердом, жидком и газообразном состоянии. Эти состояния отличаются друг от друга расположением, характером движения и взаимодействия молекул. В жидких и твердых телах, в отличии от газов, молекулы не могут далеко удалиться друг от друга. Изначально они расположены близко друг к другу и их средняя кинетическая энергия недостаточна для того, чтобы совершить работу по преодолению сил молекулярного притяжения.

Тем не менее, на практике мы часто наблюдаем, как тела переходят из твердого состояния в жидкое, и наоборот. Например, процесс таяния льда или его замерзания. В данном уроке мы более подробно рассмотрим эти процессы, узнаем при каких условиях они проходят.

Плавление и температура плавления

Плавление – это переход вещества из твердого состояния в жидкое.

Чтобы началось плавление тела, его необходимо нагреть до определенной температуры.

Температура плавления вещества – это температура, при которой вещество плавится.

Разные вещества плавятся при разных температурах. Лед начнет плавится, если мы возьмем его в руку, а чтобы расплавить железо понадобится специальная печь. Кусок олова или свинца можно расплавить в стальной ложке.

В таблице 1 представлены температуры плавления различных веществ. Вы можете заметить, что их диапазон очень широк.

Вещество $t_<пл>, \degree C$ Вещество $t_<пл>, \degree C$
Водород -259 Цинк 420
Кислород -219 Алюминий 660
Азот -210 Серебро 962
Спирт -114 Латунь 1000
Ртуть -39 Золото 1064
Лед 0 Медь 1085
Цезий 29 Чугун 1200
Калий 63 Сталь 1500
Натрий 98 Железо 1539
Олово 232 Платина 1772
Свинец 327 Осмий 3045
Янтарь 360 Вольфрам 3387

Таблица 1. Температура плавления некоторых веществ (при нормальном атмосферном давлении)

Отвердевание и температура отвердевания

Процесс, обратный плавлению, называется отвердеванием или кристаллизацией.

Отвердевание (кристаллизация) – это переход вещества из жидкого состояния в твердое.

Чтобы началось отвердевание тела, оно должно остыть до определенной температуры.

Температура отвердевания (кристаллизации) вещества – это температура, при которой вещество отвердевает (кристаллизуется).

Источник

admin
Производства
Adblock
detector