при каких условиях происходит испарение жидкости

Испарение: определение, условия и особенности процесса

isparenie

Содержание:

Испарением в физике (впрочем, и не только в ней) называют фазовый переход любой жидкости в парообразное или газообразное состояние. Простейший пример, с которым сталкивается каждый человек – испарение воды, когда мы ее сильно нагреваем, к примеру, делая себе чай, из нее идет пар. Пар этот и есть та самая вода, которая из жидкого состояния перешла в парообразное. Особенности процесса испарения разных жидкостей хорошо изучены физиками, а само испарение широко применяется в промышленности и в быту, встречается также и в природе.

Определение

Классическое определение звучит так: испарение – это переход из жидкости в газ. При этом это термодинамический процесс, то есть такой, который происходит под воздействием температурных колебаний. Именно вследствие испарения количество любой жидкости в любой незакрытой емкости будет постепенно уменьшаться.

Какие же причины испарения? Физика объясняет это явление разницей температур на грани фазового перехода: жидкость обычно несколько холоднее окружающего воздуха. Если нет каких-то внешних влияний, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость вследствие диффузии, они переходят через полупроницаемую для жидкостей, но непроницаемую для газовых веществ поверхность раздела фаз массового потока.

Важно знать, что испарение всегда происходит только с поверхности жидкости, в этом основное отличие испарения от других форм парообразования. Атомы и молекулы испаряются не все сразу, а небольшими слоями, постепенно. Но, разумеется, со временем они могут испариться полностью.

isparenie vodyi

Еще одной интересной особенностью испарения является тот факт, что оно может иметь разную направленность тепловых потоков. Они могут идти:

Направленность тепловых потоков при испарении зависит от характера жидкости, температуры окружающего воздуха и фазового раздела. Эти три величины и их соотношение формируют формулу испарения.

Испарение на молекулярном уровне

В жидкостях молекулы, хотя и расположены близко друг к другу, тем не менее, они не имеют твердой связи между собой, как в твердых телах. Поэтому они находятся в непрерывном движении, в ходе которого часто сталкиваются друг с другом, меняют свое направление и скорость своего движения. Часть молекул, которые оказались близко к поверхности могут и вовсе покинуть жидкость, если проникнут через зону фазового перехода. И тогда произойдет испарение. Как видите, обязательным условием для этого физического процесса является непрерывное движение молекул в жидкости. Если движущаяся молекула обладает достаточной кинетической энергией и скоростью, то она может преодолеть притяжение соседних частиц и вылететь на поверхность.

Почему же испарение усиливается при нагревании жидкости? При нагревании движение молекул в воде, или другой жидкости заметно ускоряется, и все больше молекул начинают гонять аки «Шумахеры», в результате вылетая на поверхность.

При этом в какой-то момент может произойти такое явление как «испарительное охлаждение жидкости», когда нагретую жидкость уже покинули все самые быстрые молекулы и происходит снижении температуры самой жидкости. В частности это явление объясняет, почему человеку, даже облитому теплой водой постепенно будет становиться холодно – все быстрые молекулы этой теплой воды испарятся, а оставшаяся вода быстро охладится без своих «молекул-гонщиков».

Isparenie v prirode

Кипение гейзеров, отличный пример испарения в природе.

Испарение и кипение: в чем отличие?

В начале статьи мы писали, что испарение особенно заметно при кипении воды, когда мы, к примеру, делаем себе чай. На самом деле испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в речке или озере непрерывно испаряется, хотя мы этого и не замечаем. Что же касается кипения, то оно является, по сути, катализированным испарением, когда сам процесс становится заметным невооруженным глазом и во много раз ускоренным.

CHashka chaya

Но кипение происходит только при определенных температурах, причем в разных жидкостях разные температуры кипения (например, у воды температура кипения 100 °C), в то же время испарение происходит всегда, независимо от температуры жидкости. В этом и заключается их отличие.

Факторы, влияющие на скорость испарения

Учеными выделены такие основные факторы, которые имеют влияние на скорость испарения:

Роль испарения

И испарение, и кипение распространенные физические явления в нашей жизни. Мы постоянно сталкиваемся с ними в нашем быту, испарение активно используется в промышленности и природных условиях, как именно, читайте далее.

Испарение в организме человека, в животных и растениях

Аналогично это работает и у животных, а некоторые порой даже стремятся ускорить процесс испарения. Так, например собаки для этой цели в жаркую погоду открывают рот и высовывают язык. Именно гортань и язык собаки наиболее подходят для испарения влаги и охлаждения тела животного.

sobaka s vyisunutyim yazyikom

Что же касается растений, то и они обладают схожим механизмом. Во избежание перегрева на Солнце они запускают процесс испарения ранее поглощенной воды, таким образом, охлаждаясь. Именно поэтому очень важно в жаркую погоду усиленно поливать культурные растения, предотвращая их выгорание или засыхание, ведь в такие дни влага особенно нужна растениями не только для питания, но и для охлаждения.

Испарение в природе и окружающей среде

Роль испарения в природе просто огромна, так как без этого физического явления была бы невозможна сама Жизнь на нашей планете. Именно испарение лежит в основе естественного круговорота воды, который обеспечивает экосистему Земли необходимыми питательными элементами и разносит жизненно важную влагу по всему миру. Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, питают растения и деревья.

Именно благодаря испарению на Земле идут дожди, а о том, как они важны и как трудно без них приходится порой, спросите об этом жителей Северной Африки или Центральной Индии, которые часто страдают от засухи.

Zasuha v Afrike

Испарение в промышленности и быту

Вот лишь несколько примеров использования испарения в промышленности.

Промышленная техника, работающая на основе процессов испарения, конструируется по одному и тому же принципу: в ней всегда максимально увеличена площадь поверхности жидкости, чем обеспечивается наиболее оптимальный теплообмен с газовой средой.

Видео

И в завершение образовательное видео по теме нашей статьи.

Источник

Испарение и конденсация воды. Несколько практических советов

%D0%94%D0%BE%D0%BB%D0%B8%D0%BD%D0%B0 %D0%B3%D0%B5%D0%B9%D0%B7%D0%B5%D1%80%D0%BE%D0%B2

Вода – одно из самых распространенных и вместе с тем самое удивительное вещество на Земле. Вода находится повсюду: и вокруг нас, и внутри нас. Мировой океан, состоящий из воды, покрывает ¾ поверхности земного шара. Любой живой организм, будь то растение, животное или человек, содержит воду. Человек более чем на 70% состоит из воды. Именно вода – одна из главнейших причин возникновения жизни на Земле. Как и любое вещество, вода может находиться в различных состояниях или, как говорят физики, ‑ агрегатных состояниях вещества: твердом, жидком и газообразном. При этом постоянно происходят переходы из одного состояния в другое – так называемые фазовые переходы. Одним из таких переходов является испарение, обратный процесс называется конденсацией. Давайте попробуем разобраться, как можно использовать это физическое явление, и что нужно знать об этом.

В процессе испарения вода переходит из жидкого состояния в газообразное, при этом образуется водяной пар. Это происходит при любой температуре, когда вода находится в жидком состоянии (0 0 – 100 0 С). Однако скорость испарения не всегда одинаковая и зависит от ряда факторов: от температуры воды, от площади поверхности воды, от влажности воздуха и от наличия ветра. Чем выше температура воды, тем быстрее двигаются ее молекулы и тем интенсивнее происходит испарение. Чем больше площадь поверхности воды, а испарение происходит исключительно на поверхности, тем больше молекул воды смогут перейти из жидкого состояния в газообразное, что увеличит скорость испарения. Чем больше содержание водяных паров в воздухе, то есть чем выше влажность воздуха, тем менее интенсивно происходит испарение. Кроме того, чем больше скорость удаления молекул водяного пара от поверхности воды, то есть чем больше скорость ветра, тем больше скорость испарения воды. Также следует отметить, что в процессе испарения воду покидают самые быстрые молекулы, поэтому средняя скорость молекул, а, значит, и температура воды уменьшаются.

%D0%93%D0%BE%D1%80%D1%8F%D1%87%D0%B8%D0%B9 %D1%87%D0%B0%D0%B9

Учитывая описанные закономерности, важно обратить внимание на следующее. Очень горячий чай пить не безвредно. Однако чтобы его заварить, требуется вода с температурой, близкой к температуре кипения (100 0 С). При этом вода активно испаряется: над чашкой с чаем хорошо видны поднимающиеся струйки водяного пара. Чтобы быстро охладить чай и сделать чаепитие комфортным, нужно увеличить скорость испарения, и охлаждение чая произойдет существенно быстрее. Первый способ известен всем с детства: если подуть на чай и тем самым удалить молекулы водяного пара и нагретый воздух от поверхности, то скорость испарения и теплопередачи увеличится, и чай быстрее остынет. Второй способ часто использовали в старину: переливали чай из чашки в блюдце и тем самым увеличивали площадь поверхности в несколько раз, пропорционально увеличивая скорость испарения и теплопередачи, благодаря чему чай быстро остывал до комфортной температуры.

Охлаждение воды при испарении хорошо ощущается, когда летом выходишь из открытого водоема после купания. С влажной кожей находиться прохладнее. Поэтому чтобы не переохладиться и не заболеть, нужно обтереться полотенцем, тем самым остановить охлаждение, вызванное испарением воды. Однако это свойство воды – охлаждаться при испарении – иногда полезно использовать для того, чтобы немного понизить высокую температуру заболевшему человеку и тем самым облегчить его самочувствие при помощи компрессов или обтираний.

При конденсации вода из газообразного состояния переходит в жидкое с выделением тепловой энергии. Это важно помнить, находясь вблизи кипящего чайника. Струя водяного пара, выходящая из его носика, имеет высокую температуру (около 100 0 С). Кроме того, соприкасаясь с кожей человека, водяной пар конденсируется, тем самым увеличивая неблагоприятное термическое воздействие, что может привести к болезненным ожогам.

%D0%9A%D0%B8%D0%BF%D1%8F%D1%89%D0%B8%D0%B9 %D1%87%D0%B0%D0%B9%D0%BD%D0%B8%D0%BA

Также полезно знать, что в воздухе всегда содержится какое-то количество водяных паров. И чем выше температура воздуха, тем больше водяных паров может быть в атмосфере. Поэтому летом при заметном понижении температуры в ночное время часть водяных паров конденсируется и выпадает в виде росы. Если утром пройти босиком по траве, то она будет влажной и холодной на ощупь, так как уже активно испаряется благодаря утреннему солнцу. Похожая ситуация происходит, если зимой войти с улицы в теплое помещение в очках, ‑ очки будут запотевать, так как водяные пары, находящиеся в воздухе, будут конденсироваться на холодной поверхности стекол. Чтобы это предотвратить, можно воспользоваться обычным мылом и нанести на стеклах сетку с шагом около 1 см, а затем растереть мыло мягкой тканью, не спеша и не сильно нажимая. Стекла очков покроются тонкой невидимой пленкой и не будут запотевать.

Водяной пар, находящийся в воздухе, можно с большой точностью считать идеальным газом и рассчитывать параметры его состояния при помощи уравнения Менделеева-Клапейрона. Предположим, что температура воздуха днем при нормальном атмосферном давлении составляет 30 0 С, а влажность воздуха 50%. Найдем, до какой температуры должен охладиться воздух ночью, чтобы выпала роса. При этом будем считать, что содержание (плотность) водяных паров в воздухе не изменялось.

По предложенному методу мы предлагаем вам решить задачу:

В закрытой банке объемом 2 л находится воздух, влажность которого составляет 80%, а температура 25 0 С. Банку поставили в холодильник, внутри которого температура 6 0 С. Какая масса воды выпадет в виде росы после наступления теплового равновесия.

Автор: Матвеев К.В., методист ГМЦ ДО г. Москвы

Источник

opredelenie osobennosti

Суть понятия

Основное определение испарения — переход из жидкости в газ. Это термодинамический процесс, обусловленный хаотичным движением молекул тел в определённых агрегатных состояниях. Благодаря его существованию количество воды, масла, эфира, бензина или любого другого жидкого вещества в незакрытой ёмкости будет непрерывно уменьшаться с течением времени.

osnovnoe opredelenie ispareniya

С точки зрения физики, испарение можно объяснить разницей температур на грани фазового перехода — жидкость обычно холоднее окружающего воздуха. Если других внешних влияний нет, испарение происходит медленно. Молекулы покидают воду в результате диффузии, переходя через полупроницаемую для жидкостей, но непроницаемую для газообразных веществ поверхность раздела фаз массового потока.

Основное отличие испарения от других форм парообразования заключается в том, что оно происходит только с поверхности. Атомы и молекулы меняют агрегатное состояние постепенно, испаряясь небольшими слоями. Впрочем, несмотря на это, с течением времени вся жидкость может постепенно испариться.

Другая отличительная черта процесса — возможность разной направленности тепловых потоков. Они могут идти:

Направленность потоков зависит от температуры воздуха, фазового раздела и самой жидкости. Соотношения этих трёх величин по-разному учитываются в формуле испарения. От них зависит его скорость, направленность теплообмена и другие факторы. Для вычисления величины используются также экспериментальные коэффициенты, полученные путём опытов. Они уникальны для каждого вещества или смеси и обусловлены их химическим составом.

Испарение на молекулярном уровне

В жидких веществах молекулы расположены почти вплотную друг к другу, но не связаны, как в твёрдых субстанциях. Из-за этого они находятся в непрерывном движении, случайным образом сталкиваются друг с другом, меняют направление и скорость движения. Частицы, оказавшиеся близко к поверхности, со временем могут покинуть её, проникнув через зону фазового перехода.

Таким образом, испарение обусловлено непрерывным движением молекул. Если они обладают достаточной кинетической энергией и скоростью, то часть из них может сорваться с поверхности воды, преодолевая притяжение соседних частиц. Некоторые отражаются и возвращаются, другие вырываются в газовую среду и навсегда покидают вещество. Процесс повторяется с новыми (теперь тоже поверхностными) частицами, пока вся жидкость не станет газообразной.

isparenie molekulyarnom

В процессе жидкость теряет часть своей энергии, из-за чего снижается также её температура — это обусловлено тем, что первыми её покидают самые быстрые (а значит, и обладающие наибольшей кинетической силой) молекулы. В результате наблюдается явление, называемое испарительным охлаждением жидкости. Этим объясняется то, что человеку быстро становится холодно в мокрой одежде, даже если ту облить тёплой водой. При комнатной температуре явление проявляется слабо, поскольку жидкость компенсирует теряемое тепло теплообменом с окружающим воздухом.

Отличия от кипения и сублимации

Испарение нередко путают с кипением. Оба процесса являются разновидностями парообразования, то есть превращения жидкого вещества в газообразное. Разница состоит в том, что закипание — гораздо более активный и быстрый процесс, смена агрегатного состояния при котором наблюдается невооружённым глазом.

isparenie proishodit vsegda

Кипение — постоянный процесс, обусловленный определёнными закономерностями в движении молекул. Их отрыв от поверхности при этом явлении происходит постоянно и не зависит от случайностей при движении. Кроме того, смена агрегатного состояния при кипении происходит с жидкостью по всей толще, а не только на поверхности. Это можно заметить на практике — при закипании воды в её толще образуются пузырьки, поднимающиеся на поверхность из-за разницы масс.

Кипение всегда сопровождается испарением, потому во многом они взаимосвязаны. Особняком стоит явление сублимации — перехода вещества из твёрдого состояния в газообразное, минуя жидкую стадию. Это явление сопровождается разрывом молекулярных связей в результате внешнего подвода энергии (обычно через нагревание).

В природе сублимация наблюдается редко. Иногда её можно наблюдать при быстром таянии льда — например, замёрзшая мокрая одежда при потеплении мгновенно высыхает.

Факторы, влияющие на скорость процесса

Учёные заметили, что процесс происходит по-разному при изменяющихся свойствах жидкости и условиях внешней среды. Они выделили основные факторы, влияющие на испарение:

isparenie proishodit minusovyh

atmosfernoe davlenie

Факторы, способные повлиять на скорость испарения, известны большинству из повседневных примеров. Далёкие предки современных людей применяли их для сушки одежды, охлаждения жидкостей и других задач.

Роль явления

Испарение и кипение — очень распространённые физические явления, без которых стала бы невозможной нормальная жизнь на земле. Люди ежедневно сталкиваются с ним в быту, а также используют в промышленности, технике, энергетике и других сферах жизнедеятельности. Кроме того, фазовый переход жидкости и газа играет важную роль в существовании живых организмов и экосистеме планеты в целом.

В организме человека, животных и растений

Испарение играет важную роль в процессе саморегуляции температуры тела человека и большинства млекопитающих. Поскольку чрезмерное тепло для них вредно или даже смертельно (при 42,2 °C в крови происходит свёртывание белка, что приводит к быстрой смерти), в процессе эволюции организм разработал систему самоохлаждения — потоотделение. Она задействуется при пребывании в жарких или душных помещениях, тяжёлом физическом труде, болезнях.

cherez pory kozhe vydelyaetsya

Через поры на коже выделяется жидкость, которая затем быстро испаряется. Это позволяет быстро избавиться от лишней энергии и охладить тело, нормализовав температуру. Некоторые животные инстинктивно пытаются усилить этот процесс — например, собаки в жаркую погоду открывают рот и высовывают язык.

Представители флоры обладают похожим защитным механизмом. Чтобы не перегреться на солнце, они запускают процесс испарения ранее поглощённой воды, тем самым охлаждаясь. Поэтому в летнюю пору садоводы усиленно поливают культурные растения, предотвращая их засыхание или выгорание в самые жаркие дни.

В природе и окружающей среде

Роль испарения и конденсации (превращение газа обратно в жидкость) в природе трудно переоценить. Они лежат в основе естественного круговорота воды, который обеспечивает экосистему необходимыми питательными веществами, спасает водоёмы от пересыхания, а животных и растений — от вымирания. Только благодаря этому явлению жизнь на земле может существовать в нынешнем виде.

isparenie bolshogo kolichestva

Испарение большого количества воды с поверхности морей, океанов, рек и озёр приводит к появлению дождевых туч, которые разносят влагу по всему миру и питают окружающую среду. Это же явление препятствует затоплению и заболачиванию участков (особенно зимой, когда тают снега и льды), возвращая лишнюю воду обратно в мировой океан.

Благодаря испарению возможно такое явление, как запахи. Животные используют его во множестве сфер своей жизни — от охоты и поиска пищи до размножения и общения. Оно также помогает представителям фауны распознавать опасность в виде хищников или огня и дыма, обнаруживать токсичные вещества в атмосфере.

В быту и промышленности

Испарение широко применяется в бытовой жизни людей, а также в создании сложных механизмов и промышленных машин. Некоторые примеры использования этого процесса:

sushka razlichnyh veschey

Промышленная техника, использующая испарение для работы, строится по одной и той же схеме. В ней максимально увеличивается площадь поверхности жидкости, чем обеспечивается наилучший теплообмен с газовой средой. Это достигается за счёт разделения воды на отдельные струи и капли, а также образования тонких плёнок вещества на внутренней поверхности и насадках. Газ в приборах разгоняется, что также улучшает эффективность охлаждения.

Источник

При каких условиях происходит испарение жидкости

%D0%BF%D0%B0%D1%80

Испарение

Испарение происходит с поверхности жидкости при любой температуре. Так, лужи высыхают и при 10 °С, и при 20 °С, и при 30 °С. Таким образом, испарением называется процесс превращения вещества из жидкого состояния в газообразное, происходящий с поверхности жидкости при любой температуре.

С точки зрения молекулярно-кинетической теории строения вещества испарение жидкости объясняется следующим образом. Молекулы жидкости, участвуя в непрерывном движении, имеют разные скорости. Наиболее быстрые молекулы, находящиеся на границе поверхности воды и воздуха и имеющие сравнительно большую энергию, преодолевают притяжение соседних молекул и покидают жидкость. Таким образом, над жидкостью образуется пар.

Поскольку из жидкости при испарении вылетают молекулы, обладающие большей внутренней энергией по сравнению с энергией молекул, остающихся в жидкости, то средняя скорость и средняя кинетическая энергия молекул жидкости уменьшаются и, следовательно, температура жидкости уменьшается.

Скорость испарения жидкости зависит от рода жидкости. Так, скорость испарения эфира больше, чем скорость испарения воды и растительного масла. Кроме того, скорость испарения зависит от движения воздуха над поверхностью жидкости. Доказательством может служить то, что бельё сохнет быстрее на ветру, чем в безветренном месте при тех же внешних условиях.

Скорость испарения зависит от температуры жидкости. Например, вода при температуре 30 °С испаряется быстрее, чем вода при 10 °С.

Хорошо известно, что вода, налитая в блюдце, испариться быстрее, чем вода такой же массы, налитая в стакан. Следовательно, скорость испарения зависит от площади поверхности жидкости.

%D1%81%D0%BA%D0%BE%D1%80%D0%BE%D1%81%D1%82%D1%8C %D0%B8%D1%81%D0%BF%D0%B0%D1%80%D0%B5%D0%BD%D0%B8%D1%8F

Конденсация

Процесс превращения вещества из газообразного состояния в жидкое называется конденсацией.

Процесс конденсации происходит одновременно с процессом испарения. Молекулы, вылетевшие из жидкости и находящиеся над её поверхностью, участвуют в хаотическом движении. Они сталкиваются с другими молекулами, и в какой-то момент времени их скорости могут быть направлены к поверхности жидкости, и молекулы вернутся в неё.

Если сосуд открыт, то процесс испарения происходит быстрее, чем конденсация, и масса жидкости в сосуде уменьшается. Пар, образующийся над жидкостью, называется ненасыщенным.

Если жидкость находится в закрытом сосуде, то вначале число молекул, вылетающих из жидкости, будет больше, чем число молекул, возвращающихся в неё, но с течением времени плотность пара над жидкостью возрастет настолько, что число молекул, покидающих жидкость, станет равным числу молекул, возвращающихся в неё. В этом случае наступает динамическое равновесие жидкости с её паром.

%D0%BD%D0%B0%D1%81%D1%8B%D1%89%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9 %D0%BF%D0%B0%D1%80

Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром.

Если сосуд с жидкостью, в котором находится насыщенный пар, нагреть, то вначале число молекул, вылетающих из жидкости, увеличится и будет больше, чем число молекул, возвращающихся в неё. С течением времени равновесие восстановится, но плотность пара над жидкостью и соответственно его давление увеличатся.

208

Конспект урока по физике в 8 классе «Испарение. Конденсация».

Источник

admin
Производства
Adblock
detector