при каких условиях нитяной маятник можно считать математическим

Период колебаний математического маятника

Математический маятник — что это такое

Маятник — твердое тело, которое совершает под действием приложенных сил механические колебания около неподвижной точки или оси.

Простейший маятник состоит из небольшого груза массой m, подвешенного на невесомой нити или тонком стержне длиной l и совершающего колебания под воздействием земного притяжения. Если нить считать нерастяжимой, размер груза незначительным по сравнению с длиной нити, а массу нити незначительной по сравнению с массой груза, то груз можно считать материальной точкой массой m, находящейся на постоянном расстоянии l от точки подвеса. Такой маятник называют математическим.

Определение модели системы

Математические модели динамических систем часто используют для анализа самых разных технических, социально-экономических, естественнонаучных систем, в которых происходят циклические процессы.
Существуют различные классификации динамических процессов. Одна из них изображена на схеме:

Маятник Фуко

Отсюда следует, что если бы Земля не вращалась, данного эффекта просто не существовало бы. Это обстоятельство указывает на то, что причиной неинерциальности земной системы отсчета является вращение планеты.

Центробежное ускорение на экваторе равно 0,034 м/с^2. По сравнению с экваториальным ускорением свободного падения g = 9,78 м/с^2 это величина малая, но она заметно влияет на изменение веса тела на экваторе по сравнению с его весом на полюсе. Если, например, взвешивать на пружинных весах тело массой 10 кг, то уменьшение веса на экваторе за счет действия центробежной силы составит около 35 г.

Период колебаний математического маятника

Период колебаний — время, за которое происходит одно полное колебание. В СИ измеряется в секундах.

Чему равен, от чего зависит частота

Если за время t совершается N колебаний, то период, обозначаемый буквой T, равен

где v — частота колебаний. Она обратно пропорциональна периоду.
Колебания можно изобразить в виде графика:

Источник: physik.ucoz.ru.
Период колебаний математического маятника можно рассчитать по формуле

g — ускорение свободного падения. Не зависит от амплитуды колебаний и массы груза.

В случае математического маятника она определяется длиной подвеса и ускорением свободного падения:

Для физического маятника в уравнение добавляются инерция и масса подвеса:

Для пружинного маятника частоту определяет жесткость пружины k:

Уравнения движения и их решение, формулы с примерами

Математический маятник — это материальная точка, имеющая массу m и подвешенная на нити с неизменяемой длиной l. Покидая положение равновесия, подвес совершает колебательные движения по дуге.

Это дает нам дифференциальное уравнение гармонических колебаний

Из уравнения следует, что при малых углах отклонения от положения равновесия маятник будет колебаться с периодом

Из этого следует, что

Начальная фаза зависит от того, как маятник вывели из положения равновесия. Рассмотрим ситуацию, в которой маятник отклонили от положения равновесия на расстояние А и отпустили без начальной скорости. Запишем уравнение движения колеблющегося тела с учетом того факта, что в начальный момент координата тела будет равна А:

x = A × cos ω t + φ 0 ;

Уравнение движения маятника:

Если маятник толкнули, когда он находился в положении равновесия, начальная координата колеблющейся точки будет равна нулю:

Будет ли начальная координата положительной или отрицательной, определяет выбор положительного направления оси. Если направление оси совпадет с направлением начальной скорости, то в уравнении движения будет знак «плюс», если не совпадет — знак «минус».

Уравнение движения маятника:

Рассмотрим задачи, для которых требуется составлять и решать уравнения движения.

Необходимо определить амплитуду и частоту колебаний точки, если известно, что при смещении точки от положения равновесия на 5 см ее скорость равна 6 см/с, а при смещении на 3 см — 10 см/с.

Исключаем время из системы:

x 1 2 + v 1 2 ω 2 = А 2 x 2 2 + v 2 2 ω 2 = А 2

Преобразовав выражения и подставив значения, данные в условиях задачи, получаем:

Необходимо вычислить циклическую частоту колебаний точки, если известно, что при скорости 13 см/с ускорение равнялось 6 см/с^2, а при уменьшении скорости до 12 см/с произошло увеличение ускорения до 10 см/с^2.

Решение:
Координата точки меняется по закону

Запишем уравнения скорости и ускорения точки:

Преобразуем уравнение, исключив из него А, и подставим значения, данные в условиях задачи:

Практическое применение математического маятника

С помощью математического моделирования динамических систем можно обнаружить схожесть динамических процессов в реальных физических, технических, биологических, химических и социально-экономических системах. Разработка моделей, позволяющих предсказывать время и другие характеристики периодических процессов в этих системах, является эффективным способом анализировать, например, сельскохозяйственные или производственно-экономические процессы.

Источник

Содержание:

Пружинные и математические маятники:

Тело или система тел, совершающие периодические колебательные движения, называются маятниками. Большинство колебательных движений, встречающихся в природе, напоминают движение пружинных и математических маятников.

240088

Система, состоящая из груза массой 240093

240101

Если немножко растянуть пружину и отпустить, то груз придет в колебательное движение в вертикальном направлении.
С помощью опытов мы определили, что смещение груза в зависимости от времени изменяется следующbм образом:

240112

Если учесть, что ускорение тела, совершающего гармонические колебания 240117, то уравнение (5.10) примет вид:

240121

Из этого уравнения мы имеем:

240125

Значит, частота циклического колебания тела, совершающего гармоническое колебание, зависит от параметров тел, входящих в систему колебания. Формула (5.12) называется формулой для
определения циклической (периодической) частоты пружинного маятника240167.

240174

Период колебания пружинного маятника прямо пропорционален выведенному из-под квадратного корня значению массы груза и обратно пропорционален выведенному из-под квадратного корня значению упругости пружины.
Рассмотрим обмен энергиями в пружинном маятнике. Кинетическая энергия маятника, если не учитывать массу пружины, равна кинетической энергии груза, 240260. В предыдущих темах было показано, что скорость можно выразить формулой 240264. В таком случае кинетическая энергия маятника равна

240269

Потенциальная энергия пружинного маятника равна энергии деформации пружины, т.е.:

240282

В большинстве случаев важно знать полную энергию системы:

240288

Если учесть, что 240290,

240295

240300 8Z9NQXZ

Обратите внимание, что полная энергия пружинного маятника является постоянной величиной, не зависящей от времени, т.е. соблюдается выполнение закона сохранения механической энергии.
Материальная точка, подвешенная на нерастяжимой и невесомой нити и совершающая периодическое колебательное движение вокруг равновесного состояния, называется математическим маятником.

Когда маятник находится в устойчивом равновесном состоянии, вес материальной точки 240310уравновешивает силу натяжения 240312(рис. 5.4), так как их модули равны и направлены по одной линии в противоположные стороны. Если наклонить маятник на угол 240317, силы 240320и 240312не смогут уравновесить друг друга из-за взаимного расположения под углом. В результате сложения таких сил появится возвращающая сила, которая вернет маятник в равновесное состояние. Если отпустить маятник, то под воздействием возвращающей силы он начинает двигаться в сторону равновесного состояния.

240328

Из рис. 5.4. видим, что:

240333

Согласно второму закону Ньютона, сила 240336 nJOUoiFпридает материальной точке ускорение 240340, поэтому

240343

Из-за того, что угол наклона очень маленький 240349, а сила 240351направлена противоположно смещению, формулу (5.19) можно записать в виде

240353

Если смещение материальной точки (шарика) во время колебательного процесса отметить буквой 240354и учитывать соотношение 240358, получим 240362
Следовательно 240370
Исходя из смысла периода колебания и учитывая, что 240374получаем

240380

Эта формула, определяющая период колебания математического маятника, называется формулой Гюйгенса. Отсюда вытекают следующие законы математического маятника:

Отсюда колебание математического маятника записывается следующим выражением:

240405

Следует отметить, что когда амплитуда колебания или угол наклона велики, колебания математического маятника не являются гармоническим. В этом случае нельзя считать 240409и для решения уравнения движения не применяется закон синусов или косинусов.

Пример:

Период колебания первого маятника равен 3 сек, второго – 4 сек. Найдите период колебания маятника с длиной, равной сумме длин этих маятников.

240416

240421

240430

Решение:
240433 nzdjAoO
Ответ: 5 cек.

Пружинный и математический маятники

Второй закон Ньютона (основной закон динамики): ускорение, приобретаемое материальной точкой, прямо пропорционально равнодействующей всех сил, действующих на нее, и обратно пропорционально массе материальной точки:

223856

Закон Гука: модуль силы упругости 223875, возникающей в теле при упругих деформациях, прямо пропорционален его абсолютному удлинению (сжатию) 223885:

223889

где k — жесткость тела, 223894— длина недеформированного тела, l — длина деформированного тела.

Рассмотрим пружинный маятник, представляющий собой колебательную систему, образованную грузом на пружине.

Пусть груз массой т, лежащий на гладкой горизонтальной поверхности, прикреплен к свободному концу невесомой пружины жесткостью k (рис. 3). Второй конец пружины закреплен относительно данной инерциальной системы отсчета (ИСО).

223905

Выведем груз из положения равновесия, сместив его на расстояние х вправо. В пружине возникнет сила упругости 223910направленная влево.

Запишем второй закон Ньютона для движения груза:

223916

В проекции на ось Ох действующих на груз сил с учетом закона Гука получаем

223922или 223926

Это уравнение аналогично уравнению гармонических колебаний

223933

Сравнивая эти два уравнения, находим циклическую частоту колебаний пружинного маятника:

223937

Тогда период колебаний пружинного маятника можно найти по формуле

223942

Как следует из полученной формулы, период колебаний пружинного маятника не зависит от амплитуды его колебаний (в пределах выполнимости закона Гука).

Свойство независимости периода колебаний маятника от амплитуды называется изохронностью (от греческих слов 223957, — равный и 223961— время). Таким образом, колебания пружинного маятника обладают свойством изохронности.

Изохронность колебаний маятника была открыта Галилео Галилеем в 1583 г. при изучении движения грузика, подвешенного на нити. Моделью данной колебательной системы является математический маятник.

Математическим маятником называется материальная точка массой т, подвешенная на невесомой нерастяжимой нити длиной l в поле каких-либо сил, например силы тяжести Земли (рис. 4).

223968

Математический маятник — это идеализированная модель реального маятника при условии, что длина нити намного больше размеров подвешенного на ней тела и масса нити намного меньше массы тела. Кроме того, деформацией нити можно пренебречь.

Галилео Галилей экспериментально определил, что период малых колебаний (9

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Математический маятник

Математический маят­ник — это материальная точка, подвешенная на невесомой и нерас­тяжимой нити, находящейся в поле тяжести Земли. Математический маятник — это идеализированная модель, правильно описывающая реальный маятник лишь при определенных условиях. Реальный ма­ятник можно считать математическим, если длина нити много больше размеров подвешенного на ней тела, масса нити ничтожна мала по сравнению с массой тела, а деформации нити настолько малы, что ими вообще можно пренебречь.

Колебательную систему в данном случае образуют нить, присо­единенное к ней тело и Земля, без которой эта система не могла бы служить маятником.

img wU 7iS,

Это уравнение называется урав­нением свободных колебаний математического маятника. Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения:

1) будем считать, что силы трения, действующие на тело, пре­небрежимо малы и потому, их можно не учитывать;

2) рассматриваются лишь малые колебания маятника с небольшим углом размаха.

Свободные колебания любых систем во всех слу­чаях описываются аналогичными уравнениями.

Причинами свободных колебаний математическо­го маятника являются:

1. Действие на маятник силы натяжения и силы тяжести, пре­пятствующей его смещению из положения равновесия и заставляю­щей его снова опускаться.

2. Инертность маятника, благодаря которой он, сохраняя свою скорость, не останавливается в положении равновесия, а проходит через него дальше.

Период свободных колебаний математического ма­ятника

img UEUaPX.

Период свободных колебаний математического маятника не за­висит от его массы, а определяется лишь длиной нити и ускорением свободного падения в том месте, где находится маятник.

Превращение энергии при гармонических колебаниях

img pQXnAZ, img n7eeX3.

Полная энергия пружинного маятника:

img rVO6O1.

Полная энергия для математического маятника:

img F090Hr

В случае математического маятника img Pol8LM

Таким образом, в процессе свободных колебаний маятника его потенциальная энергия превращается в кинетическую, кинетическая в потенциальную, потенциальная затем снова в кинетическую и т. д. Но полная механическая энергия при этом остается неизменной.

Вынужденные колебания. Резонанс.

Колебания, происходящие под действием внеш­ней периодической силы, называются вынужден­ными колебаниями. Внешняя периодическая си­ла, называемая вынуждающей, сообщает колеба­тельной системе дополнительную энергию, которая идет на восполнение энергетических потерь, проис­ходящих из-за трения. Если вынуждающая сила изменяется во времени по закону синуса или коси­нуса, то вынужденные колебания будут гармониче­скими и незатухающими.

В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из со­стояния равновесия), в случае вынужден­ных колебаний система поглощает эту энергию от источника внешней периоди­ческой силы непрерывно. Эта энергия восполняет потери, расходуемые на пре­одоление трения, и потому полная энергия колебательной системы no-прежнему ос­тается неизменной.

Частота вынужденных колебаний равна часто­те вынуждающей силы. В случае, когда частота вынуждающей силы υ совпадает с собственной ча­стотой колебательной системы υ0, происходит рез­кое возрастание амплитуды вынужденных колеба­ний — резонанс. Резонанс возникает из-за того, что при υ = υ0 внешняя сила, действуя в такт со свободными колебаниями, все время сонаправлена со скоростью колеблющегося тела и совершает по­ложительную работу: энергия колеблющегося те­ла увеличивается, и амплитуда его колебаний ста­новится большой. График зависимости амплитуды вынужденных колебаний Ат от частоты вынужда­ющей силы υ представлен на рисунке, этот график называется резонансной кривой:

img ftFpFD

Явление резонанса играет большую роль в ря­де природных, научных и производственных про­цессов. Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.

Источник

при каких условиях нитяной маятник можно считать математическим?

5269

802

Когда масса нити по отношении к массе маятника стремится к нулю, маятник колеблится на не растежимой нити в вакуме при этом сила трения стремится тоже к нулю.

Другие вопросы из категории

ран поднимает на высоту 19м за 50с.

1.Перед тактом сжатия давление в цилиндре было равно 80 кПа,а t=50 градусов.Определите t смеси,если при этом объём уменьшился в 5 раз, а давление увеличилось до 700 кПа.
2.Ёмкость камеры для легкового автомобиля равна 12 л.Какая масса воздуха потребуется для наполнения этой камеры до давления 200 кПа при 17 градусов?Какова будет его плотность?
3.Давление воздуха в велосипедной шине при t=42 градусов равно 1,7*10^5Па.Каким станет давление воздуха в шине при понижении температуры до 12 градусов?
4.Начертить график в других координатах
5.Определите соответствие зависимостей PV,VT и PT.

Читайте также

3.Какие условия необходимы, чтобы тело двигалось с постоянным ускорением?

1.Как период колебаний прожинного маятника зависит от массы груза?
2.При каких условиях колебания пружинного маятника можно считать гармоническими?

оболочки и корзины шара 114 кг. Какой полезный груз может поднять этот шар? Плотность воздуха при нормальных условиях 1,29 кг/м3. Плотность гелия 0,18 кг/м3.

А. 108 кг. Б. 144 кг. В. 258 кг. Г. 372 кг. Д. 408 кг.

2. Автомобиль, двигавшийся со скоростью 36 км/ч, начал двигаться равноускоренно с ускорением 2 м/с2, вектор ускорения направлен по вектору скорости. Какой путь пройден автомобилем за 3 с?

А. 117 м. Б. 99 м. В. 39 м. Г. 21 м. Д. 33 м. Е. 27 м.

Источник

admin
Производства
Adblock
detector