при каких условиях можно использовать формулу эйлера для расчета критической силы

При каких условиях можно использовать формулу эйлера для расчета критической силы

Во всем предыдущем изложении мы определяли поперечные размеры стержней из условий прочности. Однако разрушение стержня может произойти не только потому, что будет нарушена прочность, но и оттого, что стержень не сохранит той формы, которая ему придана конструктором; при этом изменится и характер напряженного состояния в стержне.

Наиболее типичным примером является работа стержня, сжатого силами Р. До сих пор для проверки прочности мы имели условие

image001 41

Это условие предполагает, что стержень все время, вплоть до разрушения работает на осевое сжатие. Уже простейший опыт показывает, что далеко не всегда возможно разрушить стержень путем доведения напряжений сжатия до предела текучести или до предела прочности материала.

Если мы подвергнем продольному сжатию тонкую деревянную линейку, то она может сломаться, изогнувшись; перед изломом сжимающие силы, при которых произойдет разрушение линейки, будут значительно меньше тех, которые вызвали бы при простом сжатии напряжение, равное пределу прочности материала. Разрушение линейки произойдет потому, что она не сможет сохранить приданную ей форму прямолинейного, сжатого стержня, а искривится, что вызовет появление изгибающих моментов от сжимающих сил Р и, стало быть, добавочные напряжения от изгиба; линейка потеряет устойчивость.

Поэтому для надежной работы конструкции мало, чтобы она была прочна; надо, чтобы все ее элементы были устойчивы: они должны при действии нагрузок деформироваться в таких пределах, чтобы характер их работы оставался неизменным. Поэтому в целом ряде случаев, в частности, для сжатых стержней, помимо проверки на прочность, необходима и проверка на устойчивость. Для осуществления этой проверки надо ближе ознакомиться с условиями, при которых устойчивость прямолинейной формы сжатого стержня нарушается.

image002 41

Рис.1. Расчетная схема

Возьмем достаточно длинный по сравнению с его поперечными размерами стержень, шарнирно-прикрепленный к опорам (Рис.1), и нагрузим его сверху центрально силой Р, постепенно возрастающей. Мы увидим, что пока сила Р сравнительно мала, стержень будет сохранять прямолинейную форму. При попытках отклонить его в сторону, например путем приложения кратковременно действующей горизонтальной силы, он будет после ряда колебаний возвращаться к первоначальной прямолинейной форме, как только будет удалена добавочная сила, вызвавшая отклонение.

При постепенном увеличении силы Р стержень будет все медленнее возвращаться к первоначальному положению при проверках его устойчивости; наконец, можно довести силу Р до такой величины, при которой стержень, после небольшого отклонения его в сторону, уже не выпрямится, а останется искривленным. Если мы, не удаляя силы Р, выпрямим стержень, он уже, как правило, не сможет сохранить прямолинейную форму. Другими словами, при этом значении силы Р, называемом критическим image003 40, мы будем иметь такое состояние равновесия, когда исключается вероятность сохранения стержнем заданной ему прямолинейной формы).

Переход к критическому значению силы Р происходит внезапно; стоит нам очень немного уменьшить сжимающую силу по сравнению с ее критической величиной, как прямолинейная форма равновесия вновь делается устойчивой.

С другой стороны, при очень небольшом превышении сжимающей силой Р ее критического значения прямолинейная форма стержня делается крайне неустойчивой; достаточно при этом небольшого эксцентриситета приложенной силы, неоднородности материала по сечению, чтобы стержень искривился, и не только не вернулся к прежней форме, а продолжал искривляться под действием все возрастающих при искривлении изгибающих моментов; процесс искривления заканчивается либо достижением совершенно новой (устойчивой) формы равновесия, либо разрушением.

Исходя из этого, мы должны практически считать критическую величину сжимающей силы image004 40эквивалентной нагрузке, «разрушающей» сжатый стержень, выводящей его (и связанную с ним конструкцию) из условий нормальной работы. Конечно, при этом надо помнить, что «разрушение» стержня нагрузкой, превышающей критическую, может происходить при непременном условии беспрепятственного возрастания искривления стержня; поэтому если при боковом выпучивании стержень встретит боковую опору, ограничивающую его дальнейшее искривление, то разрушение может и не наступить.

Обычно подобная возможность является исключением; поэтому практически следует считать критическую сжимающую силу низшим пределом «разрушающей» стержень силы.

image005 40

Рис.2. Аналогия понятия устойчивости из механики твердого тела

Явление потери устойчивости при сжатии можно по аналогии иллюстрировать следующим примером из механики твердого тела (рис.2). Будем вкатывать цилиндр на наклонную плоскость ab, которая потом переходит в короткую горизонтальную площадку и наклонную плоскость обратного направления cd. Пока мы поднимаем цилиндр по плоскости ab, поддерживая его при помощи упора, перпендикулярного к наклонной плоскости, он будет в.состоянии устойчивого равновесия; на площадке его равновесие делается безразличным; стоит же нам поместить цилиндр в точку с, как его равновесие сделается неустойчивым— при малейшем толчке вправо цилиндр начнет двигаться вниз.

Описанную выше физическую картину потери устойчивости сжатым стержнем легко осуществить в действительности в любой механической лаборатории на очень элементарной установке. Это описание не является какой-то теоретической, идеализированной схемой, а отражает поведение реального стержня под действием сжимающих сил.

Потерю устойчивости прямолинейной формы сжатого стержня иногда называют «продольным изгибом», так как она влечет за собой значительное искривление стержня под действием продольных сил. Для проверки на устойчивость сохранился и до сих пор термин «проверка на продольный изгиб», являющийся условным, так как здесь речь должна идти не о проверке на изгиб, а о проверке на устойчивость прямолинейной формы стержня.

Установив понятие о критической силе, как о «разрушающей» нагрузке, выводящей стержень из условий его нормальной работы, мы легко можем составить условие для проверки на устойчивость, аналогичное условию прочности.

Критическая сила image006 40вызывает в сжатом стержне напряжение, называемое «критическим напряжением» и обозначаемое буквой image007 40. Критические напряжения являются опасными напряжениями для сжатого стержня. Поэтому, чтобы обеспечить устойчивость прямолинейной формы стержня, сжатого силами Р, необходимо к условию прочности image008 39добавить еще условие устойчивости:

image009 39

где image010 39— допускаемое напряжение на устойчивость, равное критическому, деленному на коэффициент запаса на устойчивость, т. е. image011 39.

Для возможности осуществить проверку на устойчивость мы должны показать, как определять image012 39и как выбрать коэффициент запаса image013 39.

Формула Эйлера для определения критической силы.

Для нахождения критических напряжений image014 38надо вычислить критическую силу image015 38, т. е. наименьшую осевую сжимающую силу, способную удержать в равновесии слегка искривленный сжатый стержень.

Эту задачу впервые решил академик Петербургской Академии наук Л. Эйлер в 1744 году.

Заметим, что самая постановка задачи иная, чем во всех ранее рассмотренных отделах курса. Если раньше мы определяли деформацию стержня при заданных внешних нагрузках, то здесь ставится обратная задача: задавшись искривлением оси сжатого стержня, следует определить, при каком значении осевой сжимающей силы Р такое искривление возможно.

Рассмотрим прямой стержень постоянного сечения, шарнирно опертый по концам; одна из опор допускает возможность продольного перемещения соответствующего конца стержня (рис.3). Собственным весом стержня пренебрегаем.

image016 37

Рис.3. Расчетная схема в «задаче Эйлера»

Нагрузим стержень центрально приложенными продольными сжимающими силами image017 37и дадим ему весьма небольшое искривление в плоскости наименьшей жесткости; стержень удерживается в искривленном состоянии, что возможно, так как image018 35.

Деформация изгиба стержня предположена весьма малой, поэтому для решения поставленной задачи можно воспользоваться приближенным дифференциальным уравнением изогнутой оси стержня. Выбрав начало координат в точке А и направление координатных осей, как показано на рис.3, имеем:

image019 35

Возьмем сечение на расстоянии х от начала координат; ордината изогнутой оси в этом сечении будет у, а изгибающий момент равен

image020 35

По исходной схеме изгибающий момент получается отрицательным, ординаты же при выбранном направлении оси у оказываются положительными. (Если бы стержень искривился выпуклостью книзу, то момент был бы положительным, а у — отрицательным и image021 35.)

Приведенное только что дифференциальное уравнение принимает вид:

image022 35

деля обе части уравнения на EJ и обозначая дробь image023 35через image024 35приводим его к виду:

image025 35

Общий интеграл этого уравнения имеет вид:

image026 34

Это решение заключает в себе три неизвестных: постоянные интегрирования а и b и значение image027 34, так как величина критической силы нам неизвестна.

Краевые условия на концах стержня дают два уравнения:

в точке А при х = 0 прогиб у = 0,

Из первого условия следует (так как image028 34и cos kx =1)

Таким образом, изогнутая ось является синусоидой с уравнением

image029 32

Применяя второе условие, подставляем в это уравнение

image030 31

Отсюда следует, что или а или kl равны нулю.

Если а равно нулю, то из уравнения (2) следует, что прогиб в любом сечении стержня равен нулю, т. е. стержень остался прямым. Это противоречит исходным предпосылкам нашего вывода. Следовательно, sin kl = 0, и величина image031 30может иметь следующий бесконечный ряд значений:

image032 29

где image033 29— любое целое число.

Отсюда image034 28, а так как image035 28то

image036 27и image037 26

Иначе говоря, нагрузка, способная удержать слегка искривленный стержень в равновесии, теоретически может иметь целый ряд значений. Но так как отыскивается, и интересно с практической точки зрения, наименьшее значение осевой сжимающей силы, при которой становится возможным продольный изгиб, то следует принять image038 24.

Первый корень image039 23=0 требует, чтобы image040 23было равно нулю, что не отвечает исходным данным задачи; поэтому этот корень должен быть отброшен и наименьшим корнем принимается значение image041 23. Тогда получаем выражение для критической силы:

image042 23

(Здесь J—минимальный момент инерции поперечного сечения стержня.) Это — так называемая формула Эйлера для сжатого стержня с шарнирно-опертыми концами. Значению критической силы (3) соответствует изгиб стержня по синусоиде с одной полуволной [формула (2)]

Источник

Определение критической силы. Формула Эйлера

Впервые проблема устойчивости сжатых стержней была поставлена Леонардом Эйлером. Эйлер вывел расчетную формулу для критической силы и показал, что ее величина существенно зависит от способа закрепления стержня. Идея метода Эйлера заключается в установлении условий, при которых кроме прямолинейной возможна и смежная (т.е. сколь угодно близкая к исходной) криволинейная форма равновесия стержня при постоянной нагрузке.

IMG00751.

IMG00752

В теории продольного изгиба принято сжимающую силу считать положительной. Поэтому, определяя изгибающий момент в текущем сечении рассматриваемого стержня, получаем

IMG00753.

Но, как следует из рис. 13.4, при выбранном направлении осей у // у на противоположное, то одновременно изменятся знаки у и у // и знак минус в правой части уравнения (13.2) сохранится.

Следовательно, уравнение упругой линии стержня имеет вид

IMG00754.

IMG00755,

общий интеграл которого

IMG00756.

Горизонтальное смещение нижнего конца стержня, как видно из рис. 13.4, равно нулю, т. е. при х =0 прогиб у =0. Это условие будет выполнено, если B =0. Следовательно, изогнутая ось стержня является синусоидой

IMG00757.

Горизонтальное смещение верхнего конца стержня также равно нулю, поэтому

IMG00758.

IMG00759или IMG00760.

Приравнивая α l = n π и подставляя

IMG00761,

IMG00762.

Величина наибольшего прогиба стержня A в приведенном решении остается неопределенной, она принята произвольной, но предполагается малой.

Выше мы установили, что изогнутая ось стержня является синусоидой, уравнение которой после подстановки α = π n / l в выражение (13.4) принимает вид

IMG00763.

Синусоиды для n =1, n =2 изображены на рис. 13.5. Нетрудно заметить, что величина n представляет собой число полуволн синусоиды, по которой изогнется стержень. Очевидно, стержень всегда изогнется по наименьшему числу полуволн, допускаемому его опорными устройствами, так как согласно (13.5) наименьшему n соответствует наименьшая критическая сила. Только эта первая критическая сила и имеет реальный физический смысл.

IMG00764

Например, стержень с шарнирно опертыми концами изогнется, как только будет достигнуто наименьшее значение критической силы, соответствующее n =1, так как опорные устройства этого стержня допускают изгиб его по одной полуволне синусоиды. Критические силы, соответствующие n =2, n =3, и более, могут быть достигнуты только при наличии промежуточных опор (рис. 13.6). Для стержня с шарнирными концевыми опорами без промежуточных закреплений реальный смысл имеет первая критическая сила

IMG00765.

Формула (13.5), как следует из ее вывода, справедлива не только для стержня с шарнирно закрепленными концами, но и для любого стержня, который изогнется при выпучивании по целому числу полуволн. Применим эту формулу, например, при определении критической силы для стержня, опорные устройства которого допускают только продольные смещения его концов (стойка с заделанными концами). Как видно из рисунка 13.7, число полуволн изогнутой оси в этом случае n =2 и, следовательно, критическая сила для стержня при данных опорных устройствах

IMG00766.

IMG00767

Эту формулу можно записать в виде

IMG00768.

Рассмотрим далее пример, чтобы показать, какой вид имеет выражение для критической силы в случаях, когда стойка выпучивается не по целому числу полуволн синусоиды.

IMG00769

Дифференциальное уравнение изогнутой оси стойки в изображенной на рис. 13.8 системе координатных осей имеет прежний вид.

Общее решение этого уравнения:

IMG00770.

Мы предположили, что стойка изогнута, поэтому величина A не может быть равна нулю. Следовательно, cos α l = 0. Наименьший отличный от нуля, корень этого уравнения α l = π /2 определяет первую критическую силу

IMG00771,

которой соответствует изгиб стержня по синусоиде

IMG00772.

Значениям α l =3 π /2, α l =5 π /2 и т.д, как было показано выше, соответствуют большие величины P k и более сложные формы изогнутой оси стойки, которые могут практически существовать лишь при наличии промежуточных опор.

IMG00773.

Дифференциальное уравнение упругой линии

IMG00774

IMG00775.

Общее решение этого уравнения имеет вид

IMG00776.

При x =0 прогиб у =0, следовательно, B =0.

При x = l угол поворота сечения равен нулю, поэтому y / ( l )=0. Из этого условия получаем

IMG00777.

Итак, имеем следующее уравнение упругой линии стержня:

IMG00778.

Условие y ( l )=0 будет выполнено, если

IMG00779.

Отсюда получаем следующее трансцендентное разрешающее уравнение для определения величины α :

IMG00780.

IMG00781.

Сопоставляя формулы (13.7), (13.8), (13.9) и (13.10), нетрудно заметить, что все они имеют одинаковое строение, и их можно обобщить на случай любых опорных устройств стойки, если записать формулу Эйлера в виде

IMG00782.

Коэффициенты приведения μ для некоторых стоек даны на рис. 17.10.

Источник

Пределы применимости формулы Эйлера

Формула Эйлера выполняется только в пределах упругих де­формаций.

Таким образом, критическое напряжение должно быть меньше предела упругости материала.

image1479

Предельная гибкость зависит от материала стержня.

Критическую силу при рас­чете критического напряжения по формуле Ясинского можно определить как

Условие устойчивости: image1485

Контрольные вопросы и задания

1. Какое равновесие называется устойчивым?

2. Какие брусья следует рассчитывать на устойчивость?

3. Какую силу при расчете на устойчивость называют критиче­ской?

4. Напишите формулу Эйлера для расчета критической силы и назовите входящие величины и их единицы измерения.

5. Что называют гибкостью стержня, какой смысл заложен в этом названии? Назовите категории стержней в зависимости от гиб­кости.

6. От каких параметров стержня зависит предельная гибкость?

7. При каких условиях можно использовать формулу Эйлера для расчета критической силы?

8. В чем заключается расчет сжатого стержня на устойчивость? Напишите условие устойчивости. Чем отличается допускаемая сжи­мающая сила от критической?

Тема 2.10. Устойчивость сжатых стержней 295

Тема 2.10. Устойчивость сжатых стержней.

Расчеты на устойчивость

Знать условие устойчивости сжатых стержней, формулы Эйлера для определения критической силы, эмпирические формулы для расчетов критического напряжения и критической силы.

Уметь выполнять проверочные расчеты на устойчивость сжатых стержней.

Порядок выполнения расчета на устойчивость

1.Получение сведений о материале стержня для определения
предельной гибкости стержня расчетным путем или по таблице:

image1487

2. Получение сведений о геометрических размерах поперечного сечения, длине и способах закрепления концов для определения категории стержня в зависимости от гибкости:

image1489

где А — площадь сечения; Jmin— минимальный момент инерции (из осевых);

image1491

μ — коэффициент приведенной длины.

3. Выбор расчетных формул для определения критической силы
и критического напряжения.

При λ0 λ пред — расчет по формуле Эйлера.

4. Проверка и обеспечение устойчивости.

При расчете по формуле Эйлера условие устойчивости:

image1493

F — действующая сжимающая сила; [ sy ] — допускаемый коэффици­ент запаса устойчивости.

image1495

В случае невыполнения условий устойчивости необходимо уве­личить площадь поперечного сечения.

Иногда необходимо определить запас устойчивости при задан­ном нагружении:

image1497

При проверке устойчивости сравнивают расчетный запас выно­сливости с допускаемым: image1499

Примеры решения задач

Пример 1. Рассчитать гибкость стержня. Круглый стержень диаметром 20 мм закреплен так, как показано на рис. 37.1.

Решение

image1501

1. Гибкость стержня определяется по формуле

2. Определяем минимальный радиус инерции для круга.

image1503

Тема 2.10. Устойчивость сжатых стержней 297

Подставив выражения для Jmin и А (сечение — круг)

image1505

получим image1507

3. Коэффициент приведения длины для данной схемы крепления μ = 0,5.

4. Гибкость стержня будет равна image1509

Пример 2. Как изменится критическая сила для стержня, ес­ли изменить способ закрепления концов? Сравнить представленные схемы (рис. 37.2)

image1511

Решение

image1513

Критическая сила увеличится в 4 раза. FKP2 = 4FKPl.

Пример 3. Как изменится критическая сила при расчете на устойчивость, если стержень двутаврового сечения (рис. 37.3а, дву­тавр № 12) заменить стержнем прямоугольного сечения той же пло­щади (рис. 37.3b)? Остальные параметры конструкции не меняются. Расчет выполнить по формуле Эйлера.

Решение

image1515

1. Определим ширину сечения прямоугольника, высота сечения
равна высоте сечения двутавра. Геометрические параметры двутавра № 12 по ГОСТ 8239-89 следующие:

площадь сечения А1= 14,7 см 2 ;

По условию площадь прямоугольного сечения равна площади сечения двутавра. Определяем ширину полосы при высоте 12 см.

image1517

2. Определим минимальный из осевых моментов инерции.

image1519

3. Критическая сила определяется по формуле Эйлера:

image1521

4. При прочих равных условиях отношение критических сил равно отношению минимальных моментов инерции:

image1523

5. Таким образом, устойчивость стержня с сечением двутавр
№ 12 в 15 раз выше, чем устойчивость стержня выбранного прямоугольного сечения.

Тема 2.10. Устойчивость сжатых стержней 299

Пример 4. Проверить устойчивость стержня. Стержень дли­ной 1м защемлен одним концом, сечение — швеллер № 16, мате­риал — СтЗ, запас устойчивости трехкратный. Стержень нагружен сжимающей силой 82 кН (рис. 37.4).

image1525Решение

1. Определяем основные геометрические пара­ метры сечения стержня по ГОСТ 8240-89.

Швеллер № 16: площадь сечения 18,1см 2 ; ми­нимальный осевой момент сечения 63,3 см 4 ; мини­мальный радиус инерции сечения imin = 1,87 см.

2. Определяем категорию стержня в зависимости от гибкости.

Предельная гибкость для материала СтЗ λпред = 100.

Расчетная гибкость стержня при длине l = 1м = 1000мм

image1527

Рассчитываемый стержень — стержень большой гибкости, рас­чет ведем по формуле Эйлера.

image1529

3. Допускаемая нагрузка на стержень [ F ] = FKp / [ sy ].

image1531

Дата добавления: 2019-09-13 ; просмотров: 1289 ; Мы поможем в написании вашей работы!

Источник

Поделиться с друзьями
admin
Какой - самый большой справочник ответов на вопрос какой
Adblock
detector