при каких условиях колебания будут гармоническими

Содержание
  1. Гармонические колебания
  2. Колебательные движения. Формулы
  3. Гармонические колебания. Определение
  4. Гармонический закон
  5. Гармонические колебания
  6. теория по физике 🧲 колебания и волны
  7. Уравнение движения гармонических колебаний
  8. Период и частота гармонических колебаний
  9. Зависимость частоты и периода свободных колебаний от свойств системы
  10. Фаза колебаний
  11. Превращение энергии при гармонических колебаниях
  12. Резонанс
  13. Гармонические колебания
  14. Механические колебания
  15. Свободные колебания
  16. Вынужденные колебания
  17. Автоколебания
  18. Характеристики колебаний
  19. Гармонические колебания
  20. Математический маятник
  21. Пружинный маятник
  22. Закон сохранения энергии для гармонических колебаний
  23. Гармонические колебания. Характеристики гармонических колебаний
  24. Урок 36. Подготовка к ЕГЭ по физике. Часть 1. Механика.
  25. В данный момент вы не можете посмотреть или раздать видеоурок ученикам
  26. Получите невероятные возможности
  27. Конспект урока «Гармонические колебания. Характеристики гармонических колебаний»

Гармонические колебания

Техника и окружающий мир являются примерами того, что существуют такие процессы, которые повторяются через определенные промежутки времени, то есть периодически. Их называют колебательными.

Колебательные движения. Формулы

Такие движения относят к явлениям с разной физической природой с подчинением общим закономерностям. Запись колебания тока в электрической цепи и математического маятника производится одним и тем же уравнением. Различная природа колебательных движений позволяет рассматривать их с единой точки зрения, исходя из общности закономерностей.

Механические колебания – это периодические или непериодические изменения физической величины, описывающей механическое движение (скорость, перемещение и так далее).

Когда в заданной среде атомы располагаются очень близко или молекулы испытывают силовое воздействие, наблюдается возбуждение механических колебаний. Это говорит о том, что процесс будет иметь конечную скорость, зависящую от свойств среды, которая распространяется от точки к точке. Так возникают механические волны. Явный пример – звуковые волны в воздухе.

Волновые процессы и колебания разной природы имеют много общего, а их распространение может быть описано аналогичными математическими уравнениями. Это подтверждает единство материального мира.

Гармонические колебания. Определение

В механике предусмотрено движение поступательно, вращательно и с наличием колебаний.

Механические колебания – это движения тел, которые повторяются точно или приблизительно за определенные одинаковые временные промежутки.

image003 FUv4s8G

Механические колебания подразделяют на свободные и вынужденные.

Действия внутренних сил системы после выведения из равновесия порождают свободные колебания. Примером могут служить колебания груза на пружине или маятника. Если их действие происходит под воздействием внешних сил, тогда их называют вынужденными.

image024 mCKbwcM

image029

Гармонический закон

image071

image072

Источник

Гармонические колебания

теория по физике 🧲 колебания и волны

Гармоническими законами называют законы синуса и косинуса. Следовательно, гармоническими колебаниями называют те колебания, при которых координата тела изменяется синусоидально или косинусоидально.

Гармонические колебания — колебания, при которых координата тела изменяется с течением времени по гармоническому закону.

Ниже представлен график косинусоидальной функции. Обратите внимание, что косинус при возрастании аргумента от нуля сначала меняется медленно, а потом он все быстрее и быстрее приближается к нулю. Пройдя через него, его модуль снова быстро возрастает. Но по мере приближения к максимальному значению он снова замедляется. Точно так же меняются координаты свободно колеблющегося тела.

image1 4

Важно! Гармоническими можно считать только те колебания, что совершаются грузом, закрепленном на пружине, или математическим маятником, отклоняемым на малый угол, при котором ускорение тела пропорционально его смещению.

Уравнение движения гармонических колебаний

Известно, что ускорение колеблющегося на пружине груза пропорционально его смещению от положения равновесия:

Также известно, что ускорение есть вторая производная координаты. Следовательно, при свободных колебаниях координата изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.

Тогда первая производная примет вид:

Вторая производная примет вид:

Так как мы получили ровно такое же выражение, то описать свободные колебания можно уравнениями следующего вида:

Само уравнение движения, описывающего свободные колебания, примет вид:

Период и частота гармонических колебаний

Минимальный промежуток времени T, через который движение тела полностью повторяется, называют периодом колебания. Зная его, можно вычислить частоту колебаний, равную числу колебаний в единицу времени. Эти величины связаны между собой выражением:

Таким образом, величина ω 0 представляет собой число колебаний тела, но не за 1 секунду, а за 2 π секунд. Эта величина называется циклической (круговой) частотой. А частоту свободных колебаний называют собственной частотой колебательной системы.

Зависимость частоты и периода свободных колебаний от свойств системы

Изначально за величину ω 0 мы принимали постоянную, характеризующую свойства системы:

Теперь мы выяснили, что циклическая частота связана с периодом и частотой колебаний. Следовательно, период и частота колебаний также зависят от свойств системы:

Отсюда период и частота колебаний соответственно равны:

Отсюда период и частота колебаний математического маятника соответственно равны:

Эта формула была впервые получена и проверена на опыте голландским ученым Г. Гюйгенсом, современником И. Ньютона.

Период колебания возрастает с увеличением длины маятника. От массы маятника он не зависит. Это легко проверить на опыте с различными маятниками. Зависимость периода от ускорения свободного падения также легко прослеживается. Чем меньше величина g, тем больше период колебания маятника, и, следовательно, тем медленнее идут часы с маятником. Так, часы с маятником в виде груза на стержне отстанут в сутки почти на 3 с, если их поднять из подвала на верхний этаж Московского университета, который находится на высоте 200 м. И это только за счет уменьшения ускорения свободного падения с высотой.

Зависимость периода колебаний маятника от значения g используется на практике. Измеряя период колебания, можно легко измерить g. Ускорение свободного падения меняется с географической широтой. Но и на данной широте оно неодинаково, так как плотность земной коры неоднородна. В районах, где залегают более плотные породы, ускорение свободного падения принимает большие значения.

Пример №1. Сколько колебаний совершает математический маятник длиной 4,9 м за время 5 минут?

Искомое число колебаний равно отношению времени к периоду колебаний:

Период колебаний для математического маятника определяется формулой:

Фаза колебаний

Величину ϕ, стоящую под знаком косинуса или синуса, называют фазой колебаний, описываемой этой функцией. Выражается фаза в угловых единицах — радианах (рад).

Фаза определяет значение не только координаты, но и других физических величин (к примеру, скорости и ускорения, которые также изменяются по гармоническому закону). Отсюда можно сделать вывод, что фаза определяет при заданной амплитуде состояния колебательной системы в любой момент времени.

Можно изобразить на графике зависимость координаты колеблющейся точки не от времени, а от фазы. В этом случае графиком также будет являться косинусоида (или синусоида), но аргументом функции будет не время (период), а фаза, выражающаяся в радианах (см. рис.).

image2 624w152h

image3 624w154h

Выбор закона зависит от условий задачи. Если колебания начинаются с того, что тело выводят из положения равновесия и отпускают, удобнее пользоваться косинусоидальным законом, поскольку в начальный момент времени косинусоида показывает, что это тело отклонено максимально, а не находится в положении равновесия. Если для того чтобы начались колебания, совершают толчок, удобнее использовать синусоидальный закон, так как начальному моменту времени на синусоиде соответствует положение равновесия.

Превращение энергии при гармонических колебаниях

Чтобы описать превращения энергии при гармонических колебаниях, условимся, что силой трения будем пренебрегать. Для описания обратимся к рисунку ниже.

image4

Точке О на рисунке соответствует положение равновесия шарика. Если его оттянуть на расстояние xmax, равное амплитуде, пружина получит потенциальную энергию, которая примет в этом положении максимальное значение, равное:

Когда шарик отпускают, возникает сила упругости, под действием которой шарик устремляется влево. По мере уменьшения расстояния между точкой максимального отклонения и положением равновесия уменьшается и потенциальная энергия. Но в это время увеличивается кинетическая энергия шарика. Когда шарик проходит через положение равновесия в первый раз, его потенциальная энергия становится равной нулю, а кинетическая энергия обретает максимальное значение (скорость в этот момент времени тоже максимальна):

После прохождения точки О расстояние между шариком и положением равновесия снова увеличивается, и потенциальная энергия растет. Кинетическая же энергия при этом уменьшается. А в крайнем положении слева она становится равной нулю, в то время как потенциальная энергия снова примет максимальное значение.

Так как мы условились пренебрегать трением, данную колебательную систему можно считать изолированной. Тогда в ней должен соблюдаться закон сохранения энергии. Согласно ему, полная механическая энергия системы равна:

В действительности свободные колебания всегда затухают, так как в колебательной системе действует сила трения. И часть механической энергии рассеивается в виде тепла. Пример графика затухающих колебаний выглядит следующим образом:

Picture 1

Пример №2. Груз, прикрепленный к пружине, колеблется на горизонтальном гладком стержне. Найдите отношение кинетической энергии груза к его потенциальной энергии системы в момент, когда груз находится в точке, расположенной посередине между крайним положением и положением равновесия.

Так как груз находится посередине между крайним положением и положением равновесия, его координата равна половине амплитуды:

В это время потенциальная энергия груза будет равна:

Согласно закону сохранения энергии, кинетическая энергия в это время равна:

Полная механическая энергия системы равна максимальной потенциальной энергии:

Тогда кинетическая энергия равна:

Следовательно, отношение кинетической энергии к потенциальной будет выглядеть так:

Резонанс

Самый простой способ возбуждения незатухающих колебаний состоит в том, что на систему воздействуют внешней периодической силой. Такие колебания называют вынужденными.

Работы силы над такой системой обеспечивает приток энергии к системе извне. Приток энергии не дает колебаниям затухнуть, несмотря на действие сил трения.

Особый интерес вызывают вынужденные колебаний в системе, способной совершать свободные колебания. Примером такой системы служат качели. Их не получится отклонить на большой угол всего лишь одним толчком. Если их толкать то в одну, то в другую сторону, тоже ничего не получится. Но если подталкивать качели всякий раз, как они сравниваются с нами, можно раскачать их очень сильно. При этом не нужно прикладывать большую силу, но на это понадобится время. Причем после каждого такого толчка амплитуда колебаний качелей будет увеличиваться до тех пор, пока не достигнет своего максимального значения. Такое явление называется резонансом.

Резонанс — резкое возрастание амплитуды вынужденных колебаний при совпадении частоты изменения внешней силы, действующей на систему, с частотой свободных колебаний.

image6 157w127h

Графически явление резонанса можно изобразить как резкий скачок графика вверх (см. рис. выше). Причем высота «зубца», или амплитуда колебаний, будет зависеть от величины сил трения. Чем больше сила трения, тем меньше при резонансе возрастает амплитуда вынужденных колебаний. Это можно продемонстрировать графиками на рисунке ниже. Графику 1 соответствует минимальное трение, графику 3 — максимальное.

image7 223w184h

На явлении резонанса основан принцип работы частотомера — устройства, предназначенного для измерения частоты переменного тока. Он состоит из набора упругих пластин, которые закреплены на одной планке. Каждая пластина обладает определенной собственной частотой колебаний, которая зависит от упругих свойств, длины и массы. Собственные колебания пластин известны. Под действием электромагнита планка, а вместе с ней и пластины совершают вынужденные колебания. Но лишь та пластина, собственная частота которой совпадает с частотой колебаний планки, будет иметь большую амплитуду колебаний. Таким образом, определяется частота переменного тока.

Пример №3. Автомобиль движется по неровной дороге, на которой расстояние между буграми равно приблизительно 8 м. Период свободных колебаний автомобиля на рессорах 1,5 с. При какой скорости автомобиля его колебания в вертикальной плоскости станут особенно заметными?

Колебания автомобиля в вертикальной плоскости будут заметны тогда, когда частота наезда на бугры сравняется с частотой свободных колебаний автомобиля на рессорах. Поскольку частота обратно пропорциональна периоду, можно сказать, что резонанс будет достигнут тогда, когда автомобиль будет наезжать на бугры каждые 1,5 секунды. Зная расстояние между буграми и время, можем вычислить скорость:

Источник

Гармонические колебания

6052241e84c52356357921

9 класс, 11 класс, ЕГЭ/ОГЭ

Механические колебания

Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

605479da2101b286195097

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение характеризуется величинами: период, частота, амплитуда, фаза колебаний.

Формула периода колебаний

T = t/N

N — количество колебаний [-]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν = N/t = 1/T

N — количество колебаний [-]

Она используется в уравнении гармонических колебаний:

605479b9d2a9a318450583

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

Уравнение гармонических колебаний

x — координата в момент времени t [м]

t — момент времени [с]

2πνtв этом уравнении — это фаза. Ее обозначают греческой буквой φ

Фаза колебаний

t — момент времени [с]

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

605479ac9bcc5289168096

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

60547a3563dc8990912345

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

605479973db8b196526400

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника

6054909f1fbb7079249798

g — ускорение свободного падения [м/с^2]

На планете Земля g = 9,8 м/с2

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.

6054798977df2110468711

Формула периода колебания пружинного маятника

6054908df3603523614575

m — масса маятника [кг]

k — жесткость пружины [Н/м]

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

Рассмотрим его на примере математического маятника.

Источник

Гармонические колебания. Характеристики гармонических колебаний

Урок 36. Подготовка к ЕГЭ по физике. Часть 1. Механика.

20210413 vu tg sbscrb2

36

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

20210706 unblock slide1

20210706 unblock slide2

20210706 unblock slide3

Конспект урока «Гармонические колебания. Характеристики гармонических колебаний»

Данная тема посвящена гармоническим колебаниям и их характеристикам.

Окружающий нас мир наполнен разнообразными колебательными дви­жениями и процессами: колеблются ветки деревьев и кузов автобуса при движении. Колебания струн под руками умелого музыканта вызывают колебания воздуха, и слышится прекрасная музыка.

image001

Кроме того, многие важнейшие процессы внутри организма человека явля­ются колебательными: сердце человека в спокойном состоянии совершает око­ло одного колебательного движения в секунду, под действием повторяющихся нервных импульсов каждая мышца в теле человека непрерывно то сокращается, то растягивается.

image002

Таким образом, колебанием называется процесс, при котором какая-либо физическая величина, характеризующая этот процесс, последовательно изменяется то в одну, то в другую сторону около некоторого своего среднего значения. Например, на качелях, подвешенных на веревках, человек отклоняется то вперед и вверх, то назад и вверх от положения равновесия. Говорят, что качели являются колебательной системой.

Таким образом, механической колебательной системой называется совокупность тел, в которой могут происходить колебательные процессы.

Наиболее простыми механическими колебательными системами являются: вертикаль­ный пружинный маятник, который образуют Земля, штатив, пружина и груз; физический маятник, образованный Землей, штативом и шариком на нити; и горизонтальный пружинный маятник — это два штатива, две пружи­ны и шарик.

image003 image004image005

Колебательный процесс в системе может происходить под действием как внутренних, так и внешних сил. Если колебания в системе происходят только под действием внутренних сил, то их называют свободными колебаниями.

А если колебания тела повторяются через определен­ный промежуток времени, то их называют периодическими.

Рассмотрим условия, которые необходимы для того, чтобы в системе могли возникнуть свободные колебания:

1) Необходимо наличие положения устойчивого равновесия.

image006

2) Необходимо наличие у тела избыточной механической энергии по сравнению с ее энергией в положении устойчивого равновесия, так как самопроизвольно (то есть без внешнего воздействия) система не может выйти из положения равновесия.

3) на тело должна действовать возвращающая сила, то есть сила, всегда направленная к положению устойчивого равновесия.

image007

4) В идеальных колебательных системах должны отсутствовать силы сопротивления.

Теперь рассмотрим некоторые важные характеристики колебательного движения.

Периодом колебания называется промежуток времени, в течение которого совершается одно полное колебание.

image008

Частота колебаний — это величина, об­ратная периоду, равная числу колебаний, совершенных системой за одну секунду.

image009

В СИ период измеряется в секундах, а частота — в герцах.

image010

Смещением называется любое откло­нение физической величины от ее значе­ния в положении равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени.

Амплитудой называется максималь­ное смещение тела от положения равновесия.

image011

Простейшим видом колебаний являются гармонические колебания. Термин «гармонические колебания» впервые был введен в науку швейцарским физиком Даниилом Бернулли. Гармоническими называются колебания, при которых какая-либо величина изменяется с тече­нием времени по закону синуса или косинуса.

Например, гармонические колебания фи­зического маятника можно зарегистрировать следующим способом. В качестве груза взять небольшой стакан с песком, который мо­жет высыпаться через очень маленькое отверстие снизу.

image012

Если под колеблющимся маятником двигать равномерно по столу бумажную ленту, то полученная на бумаге кри­вая представляет собой синусоиду или косинусоиду в зависи­мости от выбора начального момента времени наблюдения (момента отсчета времени).

Чтобы установить основные кинематические признаки гармонических коле­баний, рассмотрим их математическую модель на примере изменения физичес­ких величин, характеризующих движение материальной точки по окружности с постоянной угловой скоростью. Начало координат поместим в центре окружности радиуса R. Пусть в начальный момент времени материальная точка находилась в положении M0 и ее радиус-вектор составлял с осью Ox угол j0.

image013

Через промежуток времени t точка переместится в положение M, а ее радиус-вектор при этом повернется на угол Dj и составляет в данный момент с осью Ox угол

image014

image015

Запишем теперь координаты точки в этот момент времени

image016

image017

Теперь расположим перпендикулярно друг к другу два экрана и будем освещать движущийся шарик. На вер­тикальном экране тень от шарика будет двигаться вдоль оси Oy по закону:

image017

То есть совершать колебания возле начала координат. На горизонтальном экране тень шарика будет двигаться вдоль оси Ox по закону:

image016

И также совершать колебания около начала координат.

Величина, стоящая под аргументом синуса или косинуса, или, в вы­бранной системе отсчета, угол между радиус-вектором и осью абсцисс называется фазой колебания.

image018

Начальная фаза колебания j0 характеризует положение точки в началь­ный момент времени.

Тогда мгновенные значения координат x и y, можно рассматри­вать как смещения шарика от нулевого значения, а модуль амплитудного значения для обеих координат равен радиусу окружности.

image019

Таким образом, кинематический закон любого гармонического движения можно представить в виде:

image020

image021

Следовательно, графически зависимость смещения колеблющейся точки от времени изображается косинусоидой или синусоидой.

image022

В записанных уравнениях w — это циклическая (или круговая) частота, которая показывает, сколько колебаний совершает материальная точка за 2p секунд. Соответственно, в системе СИ она измеряется в радианах на секунду.

image023

image024

Рассмотрим, как изменяются проекции скорости и ускорения колеблющейся точки со временем для случая, когда начальная фаза колебаний равна нулю.

image025

image026

Начнем со скорости. Для этого найдем первую производную по времени от кинематического закона гармонических колебаний.

image027

В полученном выражении произведение циклической частоты и амплитуды колебаний — это есть амплитуда проекции скорости на ось координат.

image028

Таким образом видим, что при гармонических колебаниях проекция скорости тела на координатную ось тоже изменяется по гармоническому закону с той же частотой, но с другой амплитудой и опережает по фазе смещение на p/2.

image029

Теперь рассмотрим ускорение. Для этого найдем производную от проекции скорости по времени.

image030

Величина, равная произведению квадрата циклической частоты и амплитуды колебаний, является амплитудой проекции ускорения.

image031

Как видно из формулы, при гармонических колебаниях проекция ускорения опережает смещение по фазе на p. Говорят, что проекция ускорения изме­няется с течением времени в противофазе изменению координаты.

image032

Учитывая кинематический закон гармонического движения получим, что при гармонических колебаниях проекция ускорения прямо пропорциональна смещению и противоположна ему по знаку, то есть направлено в сторону, противоположную смещению.

image033

Так как проекция ускорения — это вторая производная от смещения по времени, то последнее соотношение можно записать в виде:

image034

Это уравнение называется уравнением гармонических колебаний.

Рассмотрим процесс превращения энергии при гармонических колебаниях на примере идеального горизонтального пруженного маятника. Горизонтальный уровень, на котором находится маятник, выбираем за нулевой уровень отсчета потенциальной энергии маятника в поле силы тяжести.

image035

Если вывести тело из положения равновесия, например, сжав пружину на некоторую величину, то сообщается этому телу некоторый запас потенциальной энергии.

image036

image037

image038

После прекращения внешнего воздействия, тело придет в движение. При движении к положению равновесия его потенциальная энергия убывает, а кинетическая наоборот, возрастает, так как деформация пружины уменьшается, а скорость движения тела увеличивается. В момент прохождения телом положения равновесия его потенциальная энергия равна нулю, а вот кинетическая энергия будет максимальна.

image035

image039

image040

После прохождения положения равновесия скорость тела начинает уменьшаться, а пружина растягивается. Следовательно, кинетическая энергия тела начинает убывать, а потенциальная наоборот — возрастать. В точке максимального отклонения тела его кинетическая энергия равна нулю, а потенциальная — максимальна.

image041

image042

image043

Таким образом, при колебаниях периодически происходит переход потенциальной энергии в кинетическую и обратно.

Полная механическая энергия такой колебательной системы равна сумме его кинетической и потенциальной энергий.

image044

Если смещение материальной точки, совершающей колебания, изменяется с течением времени по гармоническому закону, то, как известно, и скорость тела изменяется также по гармоническому закону. Следовательно, кинетическую и потенциальную энергию колеблющегося тела можно задать следующими функциями

image045

image046

Из этих формул видно, что кинетическая и потенциальная энергии изменяются тоже по гармоническому закону, с одинаковой амплитудой и в противофазе друг с другом.

А вот полная механическая энергия системы, равная сумме кинетической энергии тела и упругой энергии пружины, остается неизменной и равной начальной максимальной потенциальной энергии, либо его кинетической энергии в момент прохождения положения равновесия.

image047

image048

В реальных условиях на маятник всегда действуют силы сопротивления, поэтому полная энергия уменьшается, и свободные колебания маятника с течением времени затухают, то есть их амплитуда уменьшается до нуля. Такие колебания называются затухающими.

Рассмотрели, какое движение называется колебательным и что называют свободными колебаниями. Повторили основные характеристики колебательного движения. Вспомнили, какие колебания называются гармоническими и рассмотрели, какие превращения энергии происходят при гармонических колебаниях.

Источник

admin
Производства
Adblock
detector