- “Методичка” по измерению сопротивления заземляющего устройства
- Зачем это делать
- Основные понятия позволяют говорить на одном языке. Вы понимаете и Вас понимают.
- Чем измерять
- Как измерять
- Безэлектродный метод
- Требования к приборам, документации и персоналу лаборатории
- Сколько должно быть Ом и как часто нужно измерять?
- Особенности измерения сопротивления заземления опор
- Что предполагает проверка заземления опор
- Когда должны проводиться измерения заземления опор
- Измерение сопротивления заземляющего устройства
- Описание измерителя ИС-10
- Подготовительный этап
- Какова средняя периодичность проверки состояния заземления
- Способы измерения Rз
- Виды заземляющих систем
- Условия для измерения
- Трехпроводной способ измерения сопротивления
- Неисправность заземляющего устройства
- Проверка заземления в розетках
- Проверка мультиметром
- Проверка контрольной лампочкой
- Мегаомметр лучше использовать для оценки иных факторов безопасности
- 1 Необходимость и условия заземления в частном доме
- Измерение мегаомметром
- Рекомендовано для вас:
- Методы измерений
- Вопрос 4. По какой причине при импульсном методе допустимое сопротивление вспомогательных зондов такое низкое по сравнению с техническим методом?
- Отличия между традиционным и штыревым заземлением
- Почему заземляющее устройство становится неисправным?
“Методичка” по измерению сопротивления заземляющего устройства
Зачем это делать
Измерение сопротивления заземления дает базовую информацию о его работоспособности. А так как основным средством защиты электроустановок, как правило, является именно заземляющее устройство (ЗУ), без оценки его основной характеристики не обойтись как при сдаче в эксплуатацию, так и при периодических и контрольных испытаниях в процессе эксплуатации.
Основные понятия позволяют говорить на одном языке. Вы понимаете и Вас понимают.
Согласно ПУЭ-7, сопротивлением заземляющего устройства называется отношение напряжения на ЗУ к току, стекающему с заземлителя в землю. При этом обратим внимание, что заземляющим устройством называется совокупность заземлителя и заземляющих проводников. То есть при измерении необходимо определить сопротивление всей цепи, составляющей заземлитель (распространен термин «контур заземления», обозначающий эту цепь, хотя в ПУЭ-7 он официально не закреплен).
Применительно к ЗУ различают испытания, связанные с вводом в эксплуатацию и эксплуатационные испытания. В первом случае измерение сопротивления производятся, чтобы определить, можно ли вводить ЗУ в эксплуатацию (наряду с другими видами испытаний, если они предусмотрены нормативными документами). Во втором случае оценивается работоспособность уже введенного в строй заземления в данный момент времени. Необходимость в эксплуатационных испытаниях возникает как по причине старения ЗУ, так и по причине сезонного изменения параметров заземления, связанного, например, с колебанием влажности грунтов.
Несмотря на то, что измеряется сопротивление, применение обычных омметров для проверки ЗУ практически бесполезно. Для этого вида измерений выпускаются специальные приборы. Они именуются измерителями сопротивления заземления или просто измерителями заземления.
Измерения могут проводиться на постоянном токе, переменном токе промышленной частоты (для нашей страны это частота 50 Гц), а также переменном токе высокой частоты (частота порядка сотен Гц и выше). Поскольку основой электроэнергетики все еще является переменный ток, измерения параметров заземления на постоянном токе, за исключением каких-то совсем узкоспециализированных случаев, не проводятся. При измерениях на частоте 50 Гц возникает проблема помех от блуждающих токов на той же частоте, вызванных работой электроустановок или даже ЛЭП поблизости. Эта проблема решалась возможностью вручную варьировать рабочую частоту (например, такое решение было применено в советском приборе МС-08). Измерения с использованием токов высокой частоты весьма актуальны в связи с широким распространением разного рода нелинейных нагрузок, что приводит к обилию гармоник в цепи заземления.
В современных приборах используется измерение сопротивления с использованием импульсов тока с формой «меандр», частота которых лежит в пределах от 100 до 300 Гц (например, в пользующемся большой популярностью приборе ЖГ-4300 используется частота 128 Гц). Тем самым удается отстроиться от помех с частотой 50 Гц и имитировать реальные условия, когда ток имеет множество гармоник. Дополнительная защита от действия помех достигается за счет цифровой обработки сигналов, в частности, применения быстрого преобразования Фурье.
Амплитуда напряжения на клеммах измерителей сопротивления ЗУ, как правило, не должна превышать 42 В. Благодаря этому обеспечивается безопасность процедуры измерения для персонала.
Чем измерять
Настоящей «рабочей лошадкой» для измерения сопротивления ЗУ долгие годы являлся прибор МС-08. Его выпуск был начат еще в 1957 г., при этом прибор используется кое-где до сих пор. Мало того, в интернет-магазинах можно найти новые экземпляры, продаются они по цене даже выше современных цифровых измерителей китайского производства. Кстати, упоминания о снятии с производства МС-08 найти нигде не удалось, возможно, эта легенда выпускается до сих пор?
Важным преимуществом МС-08 является то, что ему не нужны элементы питания. При измерении необходимо крутить ручку динамо-машины, вырабатывающей переменный ток. Меняя частоту вращения ручки, можно варьировать частоту, на которой производятся измерения, чтобы отстроиться от помех. С ручкой механически связана не только динамо-машина, но еще и коммутатор, выполняющий функцию выпрямителя. Коммутатор меняет полярность подключения измерительного прибора синфазно с генерируемым динамо-машиной током. Благодаря этому достаточно эффективно подавляются помехи. У прибора предусмотрено три диапазона измерений: до 10 Ом, до 100 Ом и до 1000 Ом.
В 1972 г. в СССР был налажен выпуск более совершенных измерительных приборов М416, где уже ручку крутить не нужно было. Подавление помех осуществлялось благодаря применению метода синхронного детектирования. Возможно было измерения сопротивления в пределах от 0,1 до 1000 Ом, было предусмотрено 4 диапазона измерений. В настоящее время «классический» аналоговый М416 не выпускается, тем не менее, под данным индексом на рынок сейчас поставляется цифровой измеритель сопротивления ЗУ, который, впрочем, ничего общего с «тезкой» не имеет.
Из аналоговых измерителей сопротивления ЗУ советского образца до сих пор выпускается и широко используется прибор Ф4103-М1. Он может питаться как от гальванических элементов, так и от внешнего источника. Измерения осуществляются на частоте около 300 Гц (не регулируется). Прибор способен измерять сопротивления от 0 до 15000 Ом, предусмотрено 10 диапазонов.
Современные приборы, как правило, имеют цифровую индикацию, но до сих пор есть специалисты, для которых стрелочные индикаторы являются более комфортными. Они по достоинству оценят недорогой прибор SEW 1805R со стрелочным индикатором. К преимуществам устройства, измеряющего сопротивления от 0,1 до 2000 Ом (3 диапазона), можно отнести малую силу тока, используемую при измерениях (2 мА против 80 — 200 мА у других приборов), что в ряде случаев позволяет не отключать измеряемые цепи. Другая особенность — высокая рабочая частота, составляющая 820 Гц. Недостаток прибора — он поддерживает только 2-проводную и 3-проводную схемы измерений (об этом более подробно пойдет речь далее).
Для проведения измерений в сложных условиях оптимально подойдет прибор ИС-20. В числе его преимуществ — эргономичный дизайн, степень защиты IP54, многовариантность способов питания. Диапазон измеряемых сопротивлений — от 1 микроОма до 9,99 кОм. Данные измерений могут быть переданы на компьютер беспроводным способом через Bluetooth. Рабочая частота — 128 Гц, в режиме двухпроводных измерений — 512 Гц. Важно, что прибор производится в России, что критично для ряда применений.
Современной «рабочей лошадкой» измерений сопротивления ЗУ является прибор Железный Гарри ЖГ-4300. Он очень легкий (0,9 кг с элементами питания), имеет удобный эргономичный дизайн. Можно измерять сопротивления от 0,05 Ом до 20 кОм, предусмотрено 5 диапазонов.
К топовым моделям измерителей можно отнести прибор MRU-200. Он способен измерять сопротивление защитного заземления в пределах от 0 до 19,99 кОм. Степень защиты IP54, предусмотрен встроенный NiMH аккумулятор емкостью 4,2 Ач — все это является значительными преимуществами при работе «в поле». Помимо измерения сопротивления защитного заземления, прибор также умеет определять сопротивление заземления системы молниезащиты импульсным методом, от 0 до 199 Ом. Этот измеритель сопротивления ЗУ производится на территории Евросоюза, а именно, в Польше.
Следует отметить, что перечисленные приборы, помимо основной функции, могут иметь и дополнительные, например, измерение удельного сопротивления грунта или измерение сопротивления тока утечки.
Как измерять
Наиболее распространенными являются классические методы измерения сопротивления ЗУ, основанные на применении вольтметра и амперметра с последующим вычислением сопротивления по закону Ома. Более подробно об этих методах можно прочесть здесь.
К преимуществам классических методов можно отнести возможность их использования практически для любых систем электроснабжения. Недостатки — необходимость отключения заземления от электроустановки на время измерений, влияние блуждающих токов на точность измерений.
В том случае, если измеряемое сопротивление ЗУ должно быть заведомо ниже 5 Ом, рекомендуется использовать только четырехпроводный метод.
На измерительном приборе есть потенциальные клеммы П1 и П2 и токовые клеммы Т1 и Т2. При четырехпроводном методе от П1 и Т1 к заземлению идут разные провода, которые соединяются уже непосредственно на клеммах заземления. При измерении трехпроводным методом клеммы П1 и Т1 соединяются перемычкой и от них к заземлению идет один провод. Если же прибор изначально предназначен только для измерений трехпроводным методом, то для подключения к заземлению одним проводом предусмотрена, соответственно, одна клемма.
Клеммы П2 и Т2 соединяются, соответственно, с так называемыми потенциальным штырем и токовым штырем. Измерительные штыри рекомендуется заглублять в грунт не менее, чем на 0,5 м. Обычно токовый и потенциальный штыри выстраивают в единую линию с ЗУ.
Для того, чтобы правильно определить расстояние между штырями, нужно определить максимальный размер диагонали заземлителя D. Потенциальный штырь устанавливается на расстоянии 1,5 D, но не менее 20 м от заземлителя. Токовый штырь устанавливается на расстоянии не более 3D, но не менее 40 м от заземлителя.
Но одного измерения для получения точного результата обычно недостаточно. Причина — неравномерность структуры почвы. Поэтому потенциальный штырь несколько раз устанавливают на расстоянии от 20 до 80% от исходного расстояния между потенциальным и токовым штырем. При этом каждый раз измеряется сопротивление. Чем больше точек, тем лучше, для высокой точности достаточно шага в 10%. Полученные результаты наносятся на график. Если график имеет форму плавно возрастающей кривой, то за окончательный результат берется сопротивление на участке, где разница между соседними точками не превышает 5%. Если график демонстрирует значительную крутизну либо более сложную форму, то измерения нужно повторить, изменив направление линии, на которой выставлены штыри. Возможно, придется также увеличить исходные расстояния в 1,5 — 2 раза.
Безэлектродный метод
Установить токовый и потенциальный штыри не всегда есть возможность. Например, в условиях вечной мерзлоты или когда для штырей на объекте просто нет места. В то же время, измерение заземления ЛЭП в районах вечной мерзлоты осуществляется, как правило, именно в период наибольшего промерзания грунта. Также не всегда есть возможность отключить ЗУ от электроустановки на время измерений. Тогда в ход идет безэлектродный метод измерения согласно ГОСТ Р 50571.16-2007, основанный на применении токовых клещей. Подробно он описан здесь.
На ЗУ подается от измерительного генератора переменный ток заданного напряжения с частотой, отличной от частоты сети. Сила тока в проводе заземления измеряется специальными токовыми клещами, которые чувствительны только к частоте, на которой работает измерительный генератор. Поскольку значение напряжения на ЗУ точно известно, измерив силу тока, можно вычислить, согласно закону Ома, сопротивление ЗУ.
Следует отметить, что, при всем удобстве, безэлектродный метод по точности измерений уступает правильно организованным измерениям по классическому методу. В частности, для подачи переменного тока для измерения в цепь используется прибор, аналогичный по принципу действия токовым клещам. Чтобы обеспечить нужный уровень индукции, применяется рабочая частота около 3 кГц, что также дает погрешность.
Можно считать, что безэлектродный метод дает оценку значению сопротивления ЗУ сверху. То есть реальное значение сопротивления не превысит показания прибора. С точки зрения безопасности это нормально — чем меньше реальное значение сопротивления, тем лучше.
Недостатком безэлектродного метода является то, что он может напрямую применяться только в системах ТТ и системах TN с ячеистым заземлением. Для обычных систем TN потребуется кратковременная установка перемычки между нейтралью и заземлением. Питание во всем здании, где установлено заземление, придется на время измерений отключить и преимуществ относительно классического метода уже не будет.
В качестве примеров оборудования для измерения безэлектродным способом, можно привести FLUKE-1630-2 и Greenlee CMGRT-100A. Стоимость таких систем в 5 — 10 раз выше, чем у приборов для измерения сопротивления классическим способом.
Требования к приборам, документации и персоналу лаборатории
Поскольку от исправности заземления зависит состояние здоровья, а то и жизни людей, рассматриваемые в статье приборы должны быть сертифицированы для использования на территории РФ и пройти поверку. Срок поверки измерителя сопротивления ЗУ обычно составляет 1 год, в отдельных случаях — до 2 лет. Общие требования к квалификации сотрудников, работающих с измерителем сопротивления ЗУ, как правило, приведены в технической документации к прибору.
Если измерения осуществляются в рамках текущего обслуживания электроустановки, документация по ним оформляется согласно гл. 1.8 ПТЭЭП.
Для того, чтобы лаборатория, где используется прибор, могла работать в рамках Единой системы соответствия, ее организационная структура и квалификация сотрудников должны соответствовать требованиям СДАЭ-04-2010. Лаборатория должна пройти аттестацию по правилам, приведенным в СДАЭ-01-2010 и ПОТЭЭ иметь Свидетельство о регистрации электролаборатории.
В том случае, если измерения осуществляются аккредитованной лабораторией, оформление протокола измерений осуществляется согласно ГОСТ Р 58973-2020. Этот ГОСТ дает общие правила оформления документации. Конкретный образец бланка протокола измерения сопротивления ЗУ получил название ЭЛ-8а (скачать бланк). Данный бланк соответствует требованиям ГОСТ Р 58973-2020, тем не менее, он не был введен каким-либо федеральным нормативным актом. Просто в свое время был создан типовой комплект бланков протоколов испытаний в формате *.doc. Это удобно, тем не менее, законодательно требование использовать именно такую форму нигде не закреплено.
К протоколу измерений желательно приложить копию свидетельства об аттестации лаборатории, а также копию свидетельства о поверке измерительного прибора. Эти документы сразу дадут понимание компетентности и профессионализма работников и компании производивших измерения.
Сколько должно быть Ом и как часто нужно измерять?
Некоторые нормы на сопротивление заземления приведены в таблице:
Вид заземления | Сопротивление, Ом, не более | Нормативный документ | Возможность увеличения в исключительных случаях |
Электроустановки до 1 кВ с изолированной нейтралью | 4 | п. 1.7.65 ПУЭ-7 | 10 Ом при мощности генераторов и трансформаторов не более 100 кВА |
Общее сопротивление растеканию заземлителей трехфазной ВЛ 380 В | 10 | п. 1.7.64 ПУЭ-7 | 0,01ρ раз при удельном сопротивлении земли ρ свыше 100 Ом*м, но не более 10-кратного |
Повторное сопротивление растеканию заземлителей трехфазной ВЛ 380 В | 30 | п. 1.7.64 ПУЭ-7 | 0,01ρ раз при удельном сопротивлении земли ρ свыше 100 Ом*м, но не более 10-кратного |
Заземление нейтрали генератора или трансформатора в трехфазной сети 380 В | 4 | п. 1.7.101 ПУЭ-7 | 0,01ρ раз при удельном сопротивлении земли ρ свыше 100 Ом*м, но не более 10-кратного |
Нормы РД 153-34.0-20.525-00 требуют полной проверки ЗУ на объектах электроэнергетики с периодичностью 1 раз в 12 лет. Тем не менее, после возникновения короткого замыкания или аварийных ситуаций на объекте, должно быть произведено обследование ЗУ в зоне аварии и на прилегающих к ней участках ЗУ. Кроме этого, что особенно актуально в свете проводимых мероприятий по цифровизации электроэнергетики, рекомендовано проверять ЗУ после каждой реконструкции, особенно если устанавливаются электронные и микропроцессорные устройства. Вот почему по мере внедрения современных технологий в электроэнергетике приборы для измерения сопротивления ЗУ будут все более востребованы.
Получить бесплатный расчет заземления или задать вопрос эксперту ZANDZ можно используя кнопки ниже.
Источник
Особенности измерения сопротивления заземления опор
Необходимо было переоборудовать одну из квартир в нашем доме под офис ТСЖ. По рекомендациям было принято решение обратиться в Энерджи.
Я-мама трех дочек. С переездом в новую квартиру в Москве столкнулись с проблемой, как разместить троих детей в одной комнате и при этом.
Моя детская мечта, обзавестись своим большим домом, и вот этот момент наступил! Мы с мужем начали думать над проектом, как все будет, что.
С женой решили переехать и заняться строительством нового дома. Понадобилась помощь в проектировании инженерных систем. Долго искали.
Заказывала дизайн-проект проект, для квартиры с инженерными проектами в комплекте. Сама не хотела ничего подобного делать и вообще в этом.
Давно с мужем мечтали о загородном доме. Купили участок с домом, но дизайн интерьера в нем нам совсем не нравился, мы решили сделать ремонт.
После приобретения квартиры столкнулись с необходимостью ремонта. По совету знакомых мы обратились в ENERGY-SYSTEM. В минимально сжатые.
Срочно понадобился проект перепланировки загородного дома. Перебрала кучу компаний, но везде дорого, либо не успевают сделать в назначенный.
Родители на свадьбу подарили нам трехкомнатную квартиру. Но сама квартира была в таком ужасном состоянии, что я даже не знала с чего начать.
Решила открыть частную стоматологию, о которой мечтала с детства. Взяла в аренду помещение, нужен был дизайн-проект, обратилась в Энерджи.
Статьи / Электролаборатория / Особенности измерения сопротивления заземления опор
Что предполагает проверка заземления опор
Измерение сопротивления заземления опор – электроизмерительные работы, которые проводятся при установке, а также в процессе текущего и капитального ремонта на подобных объектах. Для получения в ходе исследований максимально точных параметров, измерительные работы лучше всего проводить во временные периоды, когда уровень сопротивления почвы достигает своих максимальных величин.
Параметры сопротивления заземления можно определить путем полученных в ходе измерений величин на поправочные коэффициенты. В процессе расчетов следует также учитывать конструктивные особенности устройства заземления, характеристики грунта, а также внешние погодные условия на момент проводимых испытаний и особенности электропроекта. Поправочные коэффициенты для средней полосы России представлены в таблице ниже.
Поправочные коэффициенты в данной таблице используются не все и не всегда. Коэффициент К1 используется в ситуациях, когда проводятся измерения на влажной почве либо тогда, когда непосредственно перед испытаниями в регионе выпали значительные осадки. К2 – коэффициент, которые учитывается в расчетах, проводимых на почвах со средними параметрами влажности, либо в случаях выпадения среднего количества осадок непосредственно перед измерительными работами.
учитывается в измерениях, проведенных на сухой почве, а также в ситуациях, когда перед измерениями выпало незначительное количество осадков.
t – величина, отображающая общую глубину, на которой в почве размещена горизонтальная часть заземлителя или глубину верхней части заземлителей вертикальных.
l – общая протяженность соединительного полосы заземляющего устройства или длина вертикального проводника.
S – площадь контура заземления.
N – общее число используемых вертикальных заземлителей.
Для остальных регионов страны и за ее пределами, поправочные коэффициенты должны утверждаться местными представителями Госэнергонадзора. В то же время, следует помнить, что для элементов заземляющего устройства, расположенных в промерзшей земле на глубине ниже максимального промерзания, в расчетах не используются поправочные коэффициенты, так как и без них можно получить вполне точные параметры.
Когда должны проводиться измерения заземления опор
Как и обследование электрических сетей, проверка опор проводится в соответствии с действующими нормативными документами, заземление опор должно проверяться не реже 1 раза в течение каждых 10 лет для всех опор с защитными промежутками и разрядниками, для опор с оборудованием и на тросовых опорах напряжением более 110кВ. Внеплановые испытания должны проводиться, к примеру, если на опоре будут обнаружены следы разрушения изоляторов или перекрытий.
Измерения на опорах, установленных в населенной местности и на территориях с агрессивными или опасными почвами, допускается проведение выборочного исследования параметром сопротивления заземления – проверяется только 2% от общего числа установленных опор линии электропередач.
В случаях, когда выборочные испытания приводят к получению неудовлетворительных результатов, измерительные работы повторяются на соседних опорах с проверенными, а также проводится сравнение полученных результатов с измеренным сопротивлением почвы. Подобные действия повторяются до тех пор, пока сотрудники энергетической компании не получат удовлетворительный результат на двух опорах, установленных в одном направлении от первой опоры, на которой проводились испытания.
Помимо исследования параметров заземления, опоры центральной линии электропередач должны проходить и ряд других испытаний, специалисты, к примеру, должны также проверять правильность установки опор и другие важные характеристики.
Источник
Измерение сопротивления заземляющего устройства
Описание измерителя ИС-10
Для содержания заземляющих устройств в рабочем состоянии два раза в год проводится измерение сопротивления контура, расположенного в грунте. Измерения проводятся в период наибольшего высыхания грунта и наибольшего промерзания почвы. Заземление подразделяются на:
Несмотря на тип заземления, все они соединяются с электродами, вбитыми в землю. После проведения измерений составляется протокол. Участки заземляющих устройств с результатами измерений, не соответствующих нормам, должны быть осмотрены и отремонтированы.
Внимание! Сопротивление локального заземляющего контура для частных многоквартирных домовладений должно быть не выше 30 Ом при работе по системе TN-C-S (три фазы, рабочий ноль и заземляющий проводник). Одним из приборов, позволяющих произвести такие замеры, является измеритель сопротивления заземления ИС-10
Одним из приборов, позволяющих произвести такие замеры, является измеритель сопротивления заземления ИС-10.
Измеритель сопротивления ИС-10
Прибор применяется для тестирования величины сопротивлений:
При дополнительном использовании источника питания до 300 В/50 Гц и токоизмерительных клещей можно находить амплитуду переменного тока. Аппарат позволяет определять удельное сопротивление грунта и металлических соединений.
Подготовительный этап
Измерение сопротивления заземляющих устройств производится в летний или зимний период, когда сопротивление грунта достигает максимального значения. Если испытываются вновь смонтированные установки, в этом случае результаты измеряемого сопротивления корректируются с помощью повышающего коэффициента, учитывающего степень высыхания или промерзания грунта.
При наличии в электроустановке небольшого количества оборудования, проверка сопротивления устройства заземления осуществляется непосредственно на корпус этого оборудования. Если же оборудование имеется в большом количестве, а заземляющая сеть достаточно разветвленная, выполняются раздельные измерения сопротивлений – заземлителя и заземляющих проводников. Таким образом, проверяется металлическая связь контура заземления с корпусами электрооборудования. Данная процедура выполняется с использованием вспомогательного заземлителя, подключаемого совместно с испытываемым заземлителем к измерительному прибору.
Для того чтобы измерить падение напряжения на объекте испытаний, во время прохождения через него тока, в зоне с нулевым потенциалом размещается зонд. На точность измерений сопротивления влияет взаимное расположение основного и вспомогательного заземлителей и расстояние между ними.
На схемах отмечен специальный размер d, который в каждом случае будет следующим:
Разнос электродов должен выбираться в таком направлении, чтобы они находились не ближе 10 метров от металлоконструкций, расположенных под землей. Если подземные коммуникации присутствуют в большом количестве, может возникнуть необходимость в проведении сразу нескольких измерений. При этом выбираются различные направления лучей и разные расстояния между зондами. После нескольких измерений, наиболее точным значением будет считаться самый плохой результат.
Забивание электродов осуществляется в грунт с естественной плотностью, на минимальную глубину 0,5 метра. В случае высокого удельного сопротивления грунта, места забивки вспомогательных заземлителей увлажняются водой, а также кислотным или солевым раствором.
Какова средняя периодичность проверки состояния заземления
Периодичность проверки заземления оборудования и труб основывается на правилах эксплуатации выбранных технических устройств. Для зданий подходят индивидуальные правила, которые включают общие рекомендации по осмотру контура заземления. Сроки измерений указываются в специальных справочных материалах, которые будут использованы при выполнении профилактических мероприятий.
Как правило, чтобы поддерживать электрическую сеть в рабочем состоянии, достаточно проводить визуальный осмотр участков заземления раз в полгода. Периодичность глубокого исследования сопротивления переносного электрооборудования или дымовых труб составляет раз в год. При этом подразумевается и обследование грунта возле заземленного оборудования.
Ответственность за выполнение проверок в планируемые сроки лежит на собственнике или на работнике, которого назначил собственник. Выполнять проверку заземления переносного оборудования должны только профессионалы. Они смогут оценить качество соединения заземляющей установки с выбранным объектом, проверить целостность изоляции. Благодаря современному оборудованию они смогут найти обрыв на соединениях и выполнить ремонт.
Способы измерения Rз
Все практически реализуемые методы измерения сопротивления контура заземления основаны на известном из физики законе Ома, согласно которому сопротивление – это результат деления напряжения на протекающий по цепи ток.
Важно! Сразу оговоримся, что замерить заземление мультиметром, не обеспечивающим заданную точность снятия показаний, не представляется возможным. В этом случае придётся воспользоваться более точными измерительными приборами, способными замерять сопротивление с погрешностью до долей Ома
В этом случае придётся воспользоваться более точными измерительными приборами, способными замерять сопротивление с погрешностью до долей Ома.
Среди известных подходов к измерению сопротивления растеканию тока можно выделить следующие:
Рассмотрим каждый их этих подходов более подробно.
Известная методика измерения сопротивления заземляющих устройств с использованием пробного электрода предполагает проведение испытаний ещё до погружения конструкции в землю.
Порядок определения искомой величины приводится ниже.
Ещё до того, как проверить контур заземления, в грунт зарывается конструкция, называемая «пробный одиночный заземлитель» (он должен иметь ту же длину, что и проверяемый контур, и немного выступать над почвой).
После погружения одиночного стержня в землю проводятся замеры величины его Rз, а затем, в соответствии с его физическими размерами, с применением известных методик определяется удельное сопротивление почвы в данном месте.
Обратите внимание! Приблизительные значения величины Rз допускается измерять обычным тестером. Для понимания сути метода ВЭЗ советуем ознакомиться со схемой измерений, предполагающей использование 4-х электродов (смотрите фото ниже)
Для понимания сути метода ВЭЗ советуем ознакомиться со схемой измерений, предполагающей использование 4-х электродов (смотрите фото ниже).
Метод ВЭЗ
Согласно этой методике, чтобы померить искомую величину (Rз) сначала внешняя ЭДС подводится к наружным штырям 1 и 2, и лишь после этого измеряется разность потенциалов между двумя внутренними стержнями 3 и 4.
Отметим, что замеренное по этому методу сопротивление оказывается более точным, чем в предыдущем случае, т. к. здесь учитываются глубинные характеристики грунта (в зоне расположения «очага» стекания тока).
Для реализации третьего способа сначала собирается цепь с измеряемым и пока ещё не известным Rз. Она состоит из забиваемых в грунт основного штыря, обозначаемого как «П», и дополнительного под обозначением «Т». Для понимания сути метода ознакомьтесь со следующим фото.
Применение измерителей тока и напряжения
После их размещения в грунте между ЗУ и «Т» прикладывается внешнее напряжение, а затем амперметром (А) измеряется проходящий в цепи ток. Одновременно с этим между контрольной точкой заземляющего контура и основным электродом «П» подключается хорошо откалиброванный измерительный прибор – аналоговый вольтметр (V), измеряющий напряжение на контролируемом участке. Искомое сопротивление определяется по закону Ома.
Измерить сопротивление защитного приспособления можно с помощью фиксированного по величине резистора, текущий через который ток берётся в качестве эталона (в этом случае он может измеряться посредством обычных клещей).
В заключение напомним, что для ответа на вопрос о том, как проверить заземление в частном доме, также следует ознакомиться с требованиями нормативов, касающимися погодных условий в момент испытаний. Для получения нужного результата работать с измерителями и другими приборами рекомендуется только в летний или зимний периоды.
Виды заземляющих систем
Основой всех действующих систем заземления, применяемых в электроустановках напряжением до 1000 вольт, является система TN с глухозаземленной нейтралью источника питания. Она соединяется с открытыми проводящими частями электроустановок с помощью нулевых защитных проводников.
Более современной и безопасной схемой заземления считается система TN-S с разделением нулевых рабочего и защитного проводников на всем их протяжении. Она используется в новых зданиях и успешно защищает людей и оборудование. Система TN-S более дорогостоящая, поскольку для прокладки в трехфазной сети требуются пятижильные провода, а в однофазной сети – проводники с тремя жилами.
В системе TN-C-S защитный и рабочий нулевые проводники на каком-то определенном участке совмещаются в одном проводе. Она легко монтируется и широко применяется на различных объектах. Однако, если проводник PEN оборвется до точки разделения, то на подключенных электроприборах может появиться линейное напряжение.
Условия для измерения
При проведении замеров сопротивления заземления используют методику определения падения вольтажа, амперов. Через проводник пропускают ток необходимой силы и фиксируют изменение. Далее по формуле вычисляют коэффициент противодействия, который равен частному тока на падение напряжения. Такой способ называют методом амперметра-вольтметра.
В качестве измерителя используют обычные бытовые приборы как мультиметр. Для этого создают искусственную цепь из токового (вспомогательного) электрода и заземлителя (потенциального стержня). Таким элементом может выступать обрезок арматуры или металлической трубы. Через них пропускают электричество требуемой величины. В качестве генератора может выступать сварочный аппарат или другие трансформаторы, чьи обмотки не связаны между собой.
Важно! Необходимо создать ток нужной величины, способный преодолеть сопротивление грунта. Потенциальный электрод нужен для фиксации падения напряжения при протекании тока по заземляющему элементу
Его располагают на одинаковом расстоянии от токового электрода и контрольного элемента, но он должен находится в доступной зоне нулевого потенциала. Далее путем расчетов по закону Ома определяют геологическое сопротивление грунта
Потенциальный электрод нужен для фиксации падения напряжения при протекании тока по заземляющему элементу. Его располагают на одинаковом расстоянии от токового электрода и контрольного элемента, но он должен находится в доступной зоне нулевого потенциала. Далее путем расчетов по закону Ома определяют геологическое сопротивление грунта.
Такой способ хорош для применения в частном доме, но бытовой мультиметр не способен вырабатывать необходимое напряжение. А схема будет работать, если по цепи потечет только ток нужного номинала. Поэтому существуют специализированные приборы, которые способны дать точные результаты.
Выше был описан простой способ, состоящий из одного потенциального электрода. Существует также сложный метод, включающий в себя несколько клиньев связанных между собой в одну единую цепь. Проволока между ними формирует контур.
Схема измерения сопротивления
Трехпроводной способ измерения сопротивления
При выполнении работ по этому методу исходя из требований безопасности требуется отключение автоматического выключателя в вводном щитке питания либо снятия с заземлителя РЕ-проводника.
Неисправность заземляющего устройства
В исправном контуре электроток при аварии по проводящему элементу поступает на электроды, отводящие его. Таким образом потоки опасного напряжения вступают в контакт с грунтом и уходят на сопротивление земли.
По причине долгого нахождения в грунтовых массах металлическое составляющее токоотвода окисляется, покрываясь пленкой. Возникший коррозионный процесс препятствует прохождению тока, повышая электросопротивление всего конструктива.
Образованная коррозия отходит от металла, таким образом прекращая электрический контакт местного уровня. Количество таких зон со временем увеличивается, вследствие чего возрастает и сопротивление контура. Заземляющее устройство приходит в негодность, теряет электропроводимость. Для того, чтобы определить критический момент заземление необходимо проверить.
Проверка заземления в розетках
Проверка наличия или отсутствия заземления особенно актуальна для розеток, установленных в старых квартирах. Да и в новом жилье работоспособность заземляющих систем нередко вызывает сомнения.
Перед тем как проверить заземление, требуется определить положение фазного и нулевого проводов. Если традиционные цвета изоляции не совпадают с фактическими, тогда узнать провода можно при помощи индикаторной отвертки. Необходимо вначале коснуться ее концом одной клеммы, а затем – другой. Когда индикатор загорается – значит в этой клемме фаза, если он не горит – это ноль. Провод заземления не подключается к основным клеммам и окрашивается в желто-зеленый цвет.
Проверка мультиметром
В первом варианте проверка заземления осуществляется с использованием мультиметра. Это необходимо, даже если все цвета совпадают по нормативам. Мультиметр должен быть включен в режим проверки напряжения. Вначале оба щупа устанавливаются на фазу и ноль и замеряется напряжение. Далее нулевой щуп переставляется на заземляющий проводник РЕ.
Если при измерении заземления мультиметром он покажет величину равную или немного меньшую предыдущего значения, следовательно заземление находится в рабочем состоянии. Если на экране высвечивается ноль или нет никаких цифр, значит в системе есть обрыв и она не работает.
Проверка контрольной лампочкой
Схема испытания такая же, как и у мультиметра. Оба щупа устанавливаются в розетку на фазу и ноль. Если все нормально – лампочка загорается. Далее щуп от нуля переставляется на заземляющий контакт. Если лампочка вновь загорелась, значит контур заземления находится в исправном состоянии. Если же она не горит, следовательно где-то обрыв или в щитке неправильно выполнено подключение заземляющего провода.
Как проверить контур заземления
Что такое заземление
Зануление и заземление электроустановок
Как подключить розетку с заземлением – простые советы по монтажу и секреты профессионалов
Что такое защитное заземление
Мегаомметр лучше использовать для оценки иных факторов безопасности
Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.
Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.
Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.
Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.
Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.
Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.
Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.
При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.
Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.
С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.
1 Необходимость и условия заземления в частном доме
Дело в том, что со временем из-за износа изоляции на проводах уменьшается их сопротивление, поэтому может возникнуть «пробой» тока на корпус. Он может оказаться под напряжением и стать смертельно опасным для пользователей.
Кроме того, при длительной эксплуатации электроагрегатов на их внешних частях накапливаются значительные заряды статического электричества, воздействие которого на человека тоже малоприятно. В завершение ко всему они излучают большое количество электромагнитных волн, которые не менее пагубно влияют на здоровье людей.
Правильная установка заземления практически полностью избавляет человека от этих опасных факторов, особенно детей, которые более чувствительны к их воздействию.
Есть еще одна естественная и самая рискованная причина, по которой необходимость установки заземления возрастает – это воздействие грозовой молнии. Причем, чем меньше расстояние между грозовым облаком и подстилающей поверхностью (то есть крышей дома), тем больше вероятность «пробоя». Поэтому в регионах с частыми и интенсивными летними грозами, да еще, если дом оказался выше относительно окружающих сооружений, устанавливать молниеотвод нужно в обязательном порядке.
Измерение мегаомметром
Принцип измерений тот же самый. Отличия лишь в некоторых моментах.
Следует напомнить, что перед началом измерений необходимо произвести визуальный осмотр контура заземления на целостность всех соединений, швов и так далее. И только если дефекты не выявлены, можно приступать к работе с прибором.
Методик измерения сопротивления заземления довольно много. Они предполагают использование различных приборов, схем, и оптимальное решение принимается для конкретного контура индивидуально. Но для самостоятельной диагностики его состояния в домашних условиях достаточно и двух описанных выше.
Если же есть сомнения в правильности определения результатов, большой погрешности и так далее, следует обратиться к профессионалам. К заземлению, учитывая, что оно – составная часть схемы эн/снабжения, пренебрежительно относиться не стоит.
Успехов вам в измерениях!
Рекомендовано для вас:
Как правильно припаять паяльником проводку в домашних условиях Как рассчитать освещённость помещения светодиодными и другими лампами, пример расчёта Почему генератор не дает зарядку на аккумулятор авто — причины и способы ремонта
Методы измерений
Замеры сопротивления заземлителей чаще всего производятся методом амперметра-вольтметра. Для непосредственного измерения выполняется сборка специальной электрической цепи с проверяемым заземлителем и вспомогательным токовым электродом. Схема дополняется потенциальным электродом, принимающим участие в замерах падения напряжения во время течения электрического тока по заземлителю. Потенциальный электрод располагается в той же зоне, что и нулевой потенциал на расстоянии, одинаковом от токового электрода и заземлителя.
Не менее эффективным методом считается измерение приборами. Наиболее широко используются модели МС-08, М-416, ИС3-2016, Ф4103. Наиболее подходящим примером служит прибор М-416. Его питание осуществляется тремя батарейками, по 1,5 вольта каждая. Суммарное напряжение составляет 4,5 В. После подготовки прибора, он размещается на горизонтальной ровной поверхности, после чего – калибруется. Далее устанавливается положение КОНТРОЛЬ, стрелка должна находиться на нуле, красная кнопка должна удерживаться.
Для измерений используется трехзажимная схема. Забивание зонда и вспомогательного электрода в грунт производится на минимальную глубину 50 см, после чего к ним выполняется подключение проводов прибора в соответствии со схемой. Переключатель выставляется в положение Х1, далее нажимается кнопка и вращается ручка пока стрелка не дойдет до нуля. Полученный результат умножается на заранее выбранный множитель, что и дает итоговое значение.
Сопротивление заземляющих устройств можно измерять не только приборами, но и токовыми клещами. Применение этих устройств дает возможность не отключать заземляющее устройство и не использовать вспомогательные электроды. Таким образом, осуществляется оперативный контроль над состоянием заземления. В этом случае в качестве вторичной обмотки выступает заземляющий проводник. В головке клещей расположена первичная обмотка трансформатора, действие которой вызывает течение переменного тока во вторичной обмотке. Расчет значения сопротивления выполняется делением величины ЭДС во вторичной обмотке на ток, полученный в результате измерений клещами.
Рассматривая измерение сопротивления заземляющих устройств, следует коротко остановиться на замерах сопротивления грунта. Для этого чаще всего используется метод Веннера, основанный на прямой пропорциональной зависимости между электродами и глубиной, на которой наблюдается течение тока. Снижение сопротивления вызывает усиление коррозии, в связи с чем требуется специальная защита металлических конструкций, расположенных под землей.
Измерение сопротивления заземляющих устройств
Как проверить контур заземления
Измерение сопротивления изоляции мегаомметром
Измерение сопротивления петли фаза-ноль
Как измерить сопротивление заземления
Измерение сопротивления изоляции кабелей
Вопрос 4. По какой причине при импульсном методе допустимое сопротивление вспомогательных зондов такое низкое по сравнению с техническим методом?
Максимальное значение сопротивления вспомогательных зондов строго определено особенностями метода измерения. Речь идет о мощности, которая вносится в измерительную систему. Максимальное напряжение импульса 1,5 кВ, а ток 1 A. Невозможно выполнить измерение при этих параметрах, если зонды будут иметь такое же сопротивление, как для технического метода: до 40 кОм (50 кОм) при напряжении 50 В (25 В) и токе в цепи порядка миллиампер. Таким образом, ограничение вытекает непосредственно из того факта, что импульсный метод измерения должен иметь более высокое напряжение и больший ток.
Отличия между традиционным и штыревым заземлением
Традиционный контур заземления, который обычно монтируют самостоятельно, представляет из себя весьма громоздкую и трудоемкую подземную конструкцию.
Забивается несколько вертикальных электродов (уголок, труба, прут), между ними прокапывается траншея, и все они соединяются между собой горизонтальными связями (шиной или прутком).
Расстояние между вертикальными электродами должно быть не меньше их длины. Чем же плох такой способ?
Во-первых, мало кому охота перекапывать свой участок метровыми траншеями, а если территория оказалась уже облагорожена, то вообще возникает тупиковая ситуация. Кроме того, все эти ржавые металлические уголки, трубы и шины, находясь в земле, через несколько лет эксплуатации (буквально за 5-7 лет) начинают усиленно разрушаться.
Поэтому на сегодняшний день большую популярность получила другая система заземления, а именно — модульно штыревая или глубинная. Наиболее известные фирмы производители в наших краях Galmar и ZandZ.
Как известно, сопротивление заземляющего устройства зависит от:
глубины залегания электродов
Таким образом, если один электрод путем постепенного наращивания, забить на максимально возможную глубину, то можно получить идеальные показатели сопротивления. На этом принципе и работает глубинное заземление.
на порядок проще в монтаже
и при этом стоит уже не так дорого (можно найти комплекты порядка 5000 рублей)
Плюс ко всему этому, весь монтаж обходится без сварочных работ.
Именно необходимость сварки многих останавливает от самостоятельного выполнения данной работы. Либо нет аппарата, либо нет необходимых навыков.
Вот и приходится нанимать сторонних электриков.
Все заземление занимает место на территории вашего дома, буквально несколько квадратных сантиметров.
А еще его без проблем можно сделать прямо в подвале здания.
В среднем выходит, что в частном доме без котла для достижения требуемых 30 Ом, придется забить электрод общей длиной на 6-9 метров. Для дома с газовым отоплением (R=10 Ом) – на 9-15 метров.
Это усредненные показатели. Более точные данные всегда индивидуальны и напрямую зависят от региона, где вы проживаете, качества и состава грунта.
Если ваш дом построен на песке, однозначно покупайте 15-ти метровый комплект. Даже без наличия газового котла.
Расстояние трассы заземлителя от стены также регламентируется. В отличие от вводного кабеля оно должно быть не менее 1 метра.
Для подземного кабельного ввода этот показатель – 0,6м. Почему так, подробно читайте об этих и других требованиях в отдельной статье.
Почему заземляющее устройство становится неисправным?
При находящемся в работоспособном состоянии контуре ток по РЕ-проводнику переходит на токопроводящие электроды, находящиеся в контакте с почвой, а по ним постепенно переходит на потенциал земли. Весь поток делится на несколько составных частей.
При продолжительном пребывании в агрессивной среде грунта металлические поверхности тоководов окисляются, на них образуется окисная пленка. По мере развития коррозионных процессов прохождение тока ухудшается, электрическое сопротивление конструкции повышается. Возникающая на металлических элементах ржавчина, как правило, носит общий характер, хотя, местами можно увидеть ярко выраженные следы глубокой коррозии. Этот факт объясняется тем, что находящиеся в почве постоянно химически активные растворы щелочей, солей и кислот распределены неравномерно.
Частицы разрушенного коррозией металла отходят от тела проводника, ухудшая либо вовсе прекращая местный электрический контакт. Таких точек со временем возникает все больше, на фоне постепенно увеличивающегося сопротивления контура заземляющее устройство постепенно снижает проводимость и неспособно отвести в почву опасный потенциал. Своевременное выполнение замеров сопротивления заземления позволяет определить момент наступления критического состояния контура.
Источник