- При каких условиях частота случайного события может оценивать вероятность случайного события
- Относительная частота случайного события
- Урок 30. Алгебра 9 класс ФГОС
- В данный момент вы не можете посмотреть или раздать видеоурок ученикам
- Получите невероятные возможности
- Конспект урока «Относительная частота случайного события»
- Случайные события. Вероятность случайного события
- Алгебра и начала математического анализа. 11 класс
- Относительная частота события и статистическое определение вероятности
- Относительная частота события и статистическая вероятность
- Вероятность отклонения относительной частоты от вероятности
- Как определить, сколько нужно провести испытаний чтобы с заранее заданной вероятностью обеспечить желаемую точность ?
При каких условиях частота случайного события может оценивать вероятность случайного события
§ 1. ОСНОВНЫЕ ПОНЯТИЯ
1.1. Случайные события. Частота. Вероятность.
Теория вероятностей — математическая наука, изучающая закономерности массовых случайных явлений (событий).
Случайным событием (или просто событием) называется всякое явление, которое может произойти или не произойти при осуществлении определенной совокупности условий. Теория вероятностей имеет дело с такими событиями, которые имеют массовый характер. Это значит, что данная совокупность условий может быть воспроизведена неограниченное число раз. Каждое такое осуществление данной совокупности условий называют испытанием (или опытом).
Если, например, испытание состоит в бросании монеты, то выпадение герба является событием; если испытание — изготовление подшипника данного типа, то соответствие подшипника стандарту — событие; если испытание — бросание игральной кости, т. е. кубика, на гранях которого проставлены цифры (очки) от 1 до 6, to выпадение пятерки — событие.
Пусть при n испытаниях событие A появилось m раз.
Отношение m/n называется частотой (относительной частотой) события A и обозначается Р*(А)=m/n
Опыт показывает, что при многократном повторении испытаний частота Р*(А) случайного события обладает устойчивостью. Поясним это на примере.
Пусть при бросании монеты 4040 раз герб выпал 2048 раз. Частота появления герба в данной серии опытов равна Р*(А)=m/n=2048/4040=0,5069. При бросании той же монеты 12000 раз герб выпал 6019 раз. Следовательно, в этом случае частота Р*(А)=6019/12000=0,5016. Наконец, при 24000 бросаний герб появился 12012 раз с частотой Р*(А)=0,5005. Таким образом, мы видим, что при большом числе бросаний монеты частота появления герба обладает устойчивостью, т. е. мало отличается от числа 0,5. Как показывает опыт, это отклонение частоты от числа 0,5 уменьшается с увеличением числа испытаний. Наблюдаемое в этом примере свойство устойчивости частоты является общим свойством массовых случайных событий, а именно, всегда существует такое число, к которому приближается частота появления данного события, мало отличаясь от него при большом числе испытаний. Это число называется вероятностью события. Оно выражает объективную возможность появления события. Чем больше вероятность события, тем более возможным оказывается его появление. Вероятность события A будем обозначать через Р(А). В рассмотренном выше примере вероятность появления герба, очевидно, равна 0,5.
Событие называется достоверным, если оно в данном опыте обязательно должно произойти; наоборот, событие называется невозможным, если оно в данном опыте не может произойти.
Пусть, например, из урны, содержащей только черные шары, вынимают шар. Тогда появление черного шара — достоверное событие; появление белого шара — невозможное событие.
Если событие достоверно, то оно произойдет при каждом испытании (m=n). Поэтому частота достоверного события всегда равна единице. Наоборот, если событие невозможно, то оно ни при одном испытании не осуществится (m=0). Следовательно, частота невозможного события в любой серии испытаний равна нулю. Поэтому вероятность достоверного события равна единице, а вероятность невозможного события равна нулю.
Если событие A не является ни достоверным, ни невозможным, то его частота m/n при большом числе испытаний будет мало отличаться от некоторого числа p (где 0 Дальше.
Источник
Относительная частота случайного события
Урок 30. Алгебра 9 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Относительная частота случайного события»
Примерами таких событий являются: выпадение орла или решки при подбрасывании монеты; поражение мишени или промах при стрельбе; выпадение того или иного количества очков при бросании игрального кубика.
Отношение частоты к общему числу испытаний называют относительной частотой этого события.
Пусть некоторое испытание проводилось многократно в одних и тех же условиях. При этом фиксировалось, произошло или нет некоторое интересующее нас событие А.
Относительной частотой случайного события в серии испытаний называется отношение числа испытаний, в которых это событие наступило, к числу всех испытаний.
В ходе исследований выяснилось, что относительная частота появления ожидаемого события при повторении опытов в одних и тех же условиях, может оставаться примерно одинаковой, незначительно отличаясь от некоторого числа р.
При подбрасывании монеты отмечают те случаи, когда выпадает орёл.
Если монета однородна и имеет правильную геометрическую форму, то шансы выпадения орла или решки будут примерно одинаковы. Но при небольшом количестве бросков такой результат может не получиться.
А вот если испытание проводиться большое количество раз, то относительная частота выпадения орла близка к относительной частоте выпадения решки.
Многие учёные проводили такой эксперимент.
Так, например, английский математик Карл Пирсон бросал монету 24 тысячи раз, и относительная частота выпадения орла оказалось равной 0,5005.
А наш соотечественник, Всеволод Иванович Романовский, подбрасывая монету 80 тысяч 640 раз, нашёл, что относительная частота выпадения орла в его испытании была равна 0,4923.
Заметим, что в обоих случаях относительная частота выпадения орла очень близка к .
Говорят, что вероятность выпадения орла при подбрасывании монеты правильной геометрической формы равна .
В непрозрачном мешке лежит 7 зелёных и 12 синих кубиков. За раз можно доставать только 1 из них. Какова вероятность того, что из мешка достанут синий кубик?
Всего в мешке 19 кубиков. Значит, n=19.
Синий кубик мы можем достать 12 раз. Получаем, что m=12.
Относительная частота равна:
Вероятность того, что из мешка достанут синий кубик, равна .
Определить относительную частоту появления буквы «о» в слове «достопримечательность».
Общее число букв, то есть n=21. А количество букв «о», то есть m=3.
Значит относительная частота:
Отмечая число попаданий в корзину в каждой серии из 40 бросков, которые совершал баскетболист, получили такие данные:
Какова относительная вероятность попадания мяча в корзину для данного баскетболиста?
Определим общее число бросков. Было 5 серий по 40 бросков, то есть n=200.
Сосчитаем число попаданий в корзину:
Относительная вероятность попадания в корзину будет:
Стрелок совершил 50 выстрелов. Относительная частота попадания в цель оказалась равной 0,88. Сколько раз он промахнулся?
Зная общее число выстрелов n=50 и относительную вероятность попадания p=0,88. Найдем число попаданий в цель:
Источник
Случайные события. Вероятность случайного события
Если событие при рассматриваемых условиях происходит всегда, то оно называется достоверным. Вероятность появления достоверного события равна 1. Так, например, событие «Лето составляет 92 дня» является достоверным.
Если событие при рассматриваемых условиях не происходит никогда, то оно называется невозможным. Вероятность появления невозможного события равна 0. Так, например, событие «После декабря наступит май» является невозможным.
Вероятность случайного события может быть любым числом от 0 до 1.
Определение вероятности:
Если эксперимент заканчивается одним из |
Вероятность события обозначается буквой . Так, например, вероятность наступления события А записывают так:
, где
— благоприятное число исходов,
— общее число исходов.
Пример: Какова вероятность того, что при бросании игрального кубика выпадет: 1) менее трех очков; 2) более шести очков; 3) не более шести очков.
Решение:
1) При бросании кубика может произойти 6 равновероятных исходов: выпадет 1, 2, 3, 4, 5 или 6 очков. Из них благоприятными являются два исхода: выпадет 1 очко или выпадет 2 очка, т.к. 1 меньше 3 и 2 меньше 3. Поэтому искомая вероятность .
2) При бросании кубика может произойти 6 равновероятных исходов: выпадет 1, 2, 3, 4, 5 или 6 очков. Из них нет ни одного благоприятного исхода, т.к. более шести очков на кубике выпасть не может, значит, рассматриваемое событие является невозможным и его вероятность = 0.
3) При бросании кубика может произойти 6 равновероятных исходов: выпадет 1, 2, 3, 4, 5 или 6 очков. Из них все исходы являются благоприятными, т.к. любое из чисел 1, 2, 3, 4, 5, 7 меньше 7, значит, рассматриваемое событие является достоверным и его вероятность = 1.
Ответ: 1) ; 2)
= 0; 3)
= 1.
Поделись с друзьями в социальных сетях:
Источник
Алгебра и начала математического анализа. 11 класс
Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №33. Вероятность события. Сложение вероятностей.
Перечень вопросов, рассматриваемых в теме:
— события, испытания, вероятность, случайное событие, невозможного и достоверного события;
— понятие классической вероятности события;
— поиск вероятности случайного события, пользуясь определением классической вероятности;
— поиск вероятности суммы событий.
Испытанием называется осуществление определенных действий.
Событие— факт, который может произойти в результате испытания.
Любой результат испытания называется исходом.
Достоверным называют событие, которое в результате испытания обязательно произойдёт.
Невозможным называют событие, которое заведомо не произойдёт в результате испытания.
Пространство элементарных событий Ω — множество всех различных исходов произвольного испытания.
Если события не могут произойти одновременно в одном испытании, то события называются несовместными.
Противоположное событие происходит тогда, когда исходное событие А не происходит.
Полной группой событий называется такая система событий, что в результате испытания непременно произойдет одно и только одно из них.
Число испытаний, в которых событие наступило, назовем абсолютной частотой и обозначим n. Общее число произведенных испытаний обозначим N.
Отношение абсолютной частоты к числу испытаний n/N называется относительной частотой события.
Относительная частота показывает, какая доля испытаний завершилась наступлением данного события. Эта относительная частота и определяет вероятность случайного события. Её ещё называют статистической вероятностью события.
Суммой событий А и В называется событие А+В, которое состоит в том, что наступит или событие А, или событие В, или оба события одновременно.
Произведением событий А и В называется событие А•В, состоящее в совместном осуществлении событий А и В.
Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е., Шабунин М.И. Под ред. А.Б. Жижченко. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. Уровни. – 2-е изд. – М.: Просвещение, 2010. – 336 с.: ил. – ISBN 978-5-09-022250-1, сс. 180-188.
Открытые электронные ресурсы:
Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.
Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.
Теоретический материал для самостоятельного изучения
В корзине лежат клубки ниток зеленого и белого цвета. Бабушка просит внучку достать ей клубок ниток и, внучка наугад из корзины вынимает один клубок. Какое из следующих событий может произойти?
1) вынутый предмет окажется клубком
2) вынутый предмет окажется красным клубком
3) вынутый предмет окажется зеленым клубком
4) вынутый предмет не окажется клубком
Ответ: первое и третье.
1. Теория вероятностей – раздел математики, изучающий случайные события, случайные величины, их свойства и операции над ними. Рассмотрим некоторые ключевые понятия, которые используются в теории вероятностей.
Испытанием называется осуществление определенных действий.
Под событием понимают любой факт, который может произойти в результате испытания.
Любой результат испытания называется исходом.
Достоверным называют событие, которое в результате испытания обязательно произойдёт.
Невозможным называют событие, которое заведомо не произойдёт в результате испытания.
События обычно обозначаются заглавными буквами латинского алфавита (А, В, С, D,…).
Рассматривая приведенный пример, мы можем сформулировать следующие заключения.
2. Определим еще несколько важных понятий теории вероятностей
Пространство элементарных событий Ω— множество всех различных исходов произвольного испытания.
Например, при броске одной игральной кости пространство элементарных событий Ω=
Если события не могут произойти одновременно в одном испытании, то события называются несовместными.
Например, при бросании монеты не могут одновременно выпасть «Орёл» и «Решка».
Простейшим примером несовместных событий является пара противоположных событий.
Противоположное событие происходит тогда, когда исходное событие А не происходит.
Событие, противоположное данному, обычно обозначается той же латинской буквой с чёрточкой сверху.
Полной группой событий называется такая система событий, что в результате испытания непременно произойдет одно и только одно из них.
Монету подбросили дважды. Укажите все элементарные события полной группы событий.
Элементарными событиями являются:
— Выпал один «орел» и одна «рещка».
3. Чтобы выяснить, насколько вероятно то или иное случайное событие, нужно подсчитать, как часто оно происходит.
Число испытаний, в которых событие наступило, назовем абсолютной частотой и обозначим n. Общее число произведенных испытаний обозначим N.
Отношение абсолютной частоты к числу испытаний n/N называется относительной частотой события.
Относительная частота показывает, какая доля испытаний завершилась наступлением данного события. Эта относительная частота и определяет вероятность случайного события. Ее еще называют статистической вероятностью события.
Статистическая вероятность события рассчитывается опытным путем.
Еще со времен Древнего Китая за 2238 лет до нашей эры на основании метрик демографы обнаружили, что на каждую тысячу новорожденных приходится 514 мальчиков.
Это означает, что Вероятность рождения мальчика составляет 0,514.
1. Классическое определение вероятности применяется для равновозможных событий.
К равновозможным (равновероятностным) относятся такие события, для которых нет никаких объективных оснований считать, что одно является более возможным, чем другие.
Например, при бросании игрального кубика события выпадения любого из очков равно возможны.
Рассмотрим произвольный эксперимент.
Пусть n— число всех исходов эксперимента, которые образуют полную группу попарно несовместных и равновозможных событий, m – число благоприятных событию А исходов. Тогда вероятностью события А называется число
Согласно определению вероятности наименьшее значение вероятности принимает невозможное событие, так как оно не может наступить и для него m=0, значит и вероятность равна 0.
Наибольшее значение принимает достоверное событие. В силу того, что оно гарантированно произойдет, для него m=n, Р=m/n=n/n=1.
Произведением событий А и В называется событие А•В, состоящее в совместном осуществлении событий А и В.
Теорема сложения вероятностей несовместных событий: вероятность появления одного из двух несовместных событий А или В равна сумме вероятностей этих событий:
Примеры и разбор решения заданий тренировочного модуля
Известна история о том, как однажды к Г. Галилею явился солдат и попросил помочь ему в решении насущного вопроса: какая сумма 9 или 10 очков при бросании трех костей выпадает чаще?
Может показаться, что шансы равны, так как каждая сумма из 9 и 10 очков может быть получена одним их шести способов:
9 = 1 + 2 + 6 = 1 + 3 + 5 = 1 + 4 + 4 = 2 + 2 + 5 = 2 + 3 + 4 = 3 + 3 + 3;
10 = 1 + 3 + 6 = 1 + 4 + 5 = 2 + 2 + 6 = 2 + 3 + 5 = 2 + 4 + 4 = 3 + 3 + 4.
Однако с учетом перестановок для суммы 9 очков получается 25 различными способами (по 6 способов для первого, второго, пятого вариантов суммы, по 3 способа для третьего и четвертого вариантов, 1 способ для последнего варианта 6 + 6 + 3 + 3 + 6 + 1), а для суммы 10 очков – 27 различными способами (6 + 6 + 3 + 6 + 3 + 3). Как видно, шансы этих случайных событий довольно близки между собой и относятся друг к другу как 25:27, что и вызвало затруднения солдата.
Таким образом, чаще выпадает сумма 10.
Пример 2. В средние века среди феодальной знати были широко распространены азартные игры. Большим любителем таких игра был француз шевалье де Мере. Страстного игрока в кости, придворного французского короля шевалье де Мере можно отнести к числу «основателей» теории вероятностей. Заслуга его состоит в том, что он настойчиво заставлял математиков решать различные задачи, на которые наталкивался сам во время своей практики игры. Он хотел разбогатеть при помощи игры в кости. Для этого шевалье придумывал различные усложненные правила игры. Страстному игроку, но плохому математику, де Мере посчастливилось иметь такого друга, как Паскаль. В 1654 г. шевалье де Мере обратился к Блезу Паскалю за помощью в разрешении проблем, связанных с вероятностью благоприятных результатов при бросании игральных костей.
Одна из задач была поставлена следующим образом: Игральная кость бросается четыре раза. Шевалье бился об заклад, что при этом хотя бы один раз выпадет шесть очков. Какова вероятность выигрыша для шевалье? Ответ округлите до десятых.
Так как при каждом бросании игральной кости имеется 6 различных возможностей, то при четырех бросаниях кости число различных возможных случаев будет 6 · 6 · 6 · 6 = 1296.
Среди этих 1296 случаев будет 5 · 5 · 5 · 5 = 625 таких, где шестерка не выпадет ни разу.
В 1296 – 625 = 671 случае хотя бы один раз из четырех выпадает шестерка. Следовательно, вероятность выпадения хотя бы одной шестерки при четырех бросаниях кости равна 671/1296, что чуть больше 0,5.
Источник
Относительная частота события
и статистическое определение вероятности
Сегодня мы завершаем изучение первого раздела теории вероятностей, который посвящён основным подходам к определению вероятности, теоремам сложения и умножения событий, а также их основным следствиям. В учебной литературе статистическое определение вероятности обычно рассматривается в первой же главе, но вот мне показалось удачным отложить этот вопрос на заключительный урок по теме. Давайте вспомним, с чего всё начиналось:
Вероятность наступления события в некотором испытании – есть отношение
, где:
– общее число всех равновозможных, элементарных исходов этого испытания, которые образуют полную группу событий;
– количество элементарных исходов, благоприятствующих событию
.
О некоторых недостатках классического определения вероятности заходила речь в статье Геометрическое определение вероятности, но это только верхушка айсберга, и сейчас данный вопрос получит интереснейшее продолжение. Начнём опять же с бесхитростных примеров 1-го урока по теории вероятностей:
– вероятность того, что в результате броска монеты выпадет «орёл»;
– вероятность того, что в результате броска игральной кости выпадет 5 очков;
– вероятность того, что из колоды будет извлечена трефа
Внимательный читатель заметил, что все комментарии о вероятностях сформулированы в будущем времени. И это не случайность – классическое определение, как правило, оценивает вероятность ДО проведения испытаний и даже без их фактического проведения. То есть, монета ещё не подброшена, а вероятность появления орла мы уже прекрасно знаем. Можно дать зарок никогда не брать в руки кубик либо колоду карт, однако, вероятности событий беспроблемно рассчитываются и без этого.
Примечание: однако, в отсутствии информации о результате испытания фразу «Вероятность того, что монета упала орлом» (например) всё же нельзя признать некорректной. То есть классическое определение может оценивать вероятность и после реального опыта.
Почему такое возможно? Такое возможно потому, что все элементарные исходы известны и подсчитаны заранее:
орёл и решка – итого 2 элементарных исхода;
1, 2, 3, 4, 5, 6 – 6 элементарных исходов;
6, 7, 8, 9, 10, В, Д, К, Т каждой масти – всего 36 карт.
Кроме того, для применения классического определения вероятности необходима равновозможность элементарных исходов (см. определение). Равновозможность выпадения граней монеты либо кубика обуславливается симметрией и несмещённым центром тяжести, колода же карт должна быть полной, некраплёной и хорошо перемешанной.
И всё было бы ладно, но в реальной жизни подобные модели встречаются нечасто. В большинстве ситуаций элементарные исходы перечислить затруднительно или невозможно, и ещё труднее обосновать их равновозможность. Простой пример:
Штирлиц пошёл в лес за грибами. Найти вероятность того, что он найдёт подберёзовик.
Кстати, каверзная задачка на счёт равновозможности была в конце урока о теоремах Лапласа. Краткая суть состоит в следующем: если в городе проживает примерно равное количество мужчин и женщин (которых подсчитать значительно проще =)), то это ещё не значит, что вероятность встретить на улице мужчину либо женщину равна 1/2.
Вновь обратим внимание на шаблонные формулировки стандартных задач:
«Стрелок попадает в мишень с вероятностью 0,8»;
«Вероятность изготовления бракованной детали на данном станке составляет 0,05».
Возникает вопрос, откуда взялись эти значения? И ответ здесь один: данные вероятности могли получиться только на основе ранее проведённых опытов.
Относительная частота события и статистическая вероятность
Относительной частотой события называют отношение числа испытаний
, в которых данное событие появилось, к общему числу
фактически проведённых испытаний:
, или короче:
Относительная частота наряду с вероятностью является одним из ключевых понятий тервера, но если классическое либо геометрическое определение вероятности не требуют проведения испытаний, то относительная частота рассчитывается исключительно ПОСЛЕ опытов на основе фактически полученных данных.
В том случае, если серии испытаний проводятся в неизменных условиях, то относительная частота обнаруживает свойство устойчивости, то есть колеблется около определённого значения.
Пусть некий профессиональный стрелок произвёл 100 выстрелов по мишени и попал 83 раза. Тогда относительная частота поражения цели составит: .
Предположим, что тот же самый стрелок в точно такой же «форме» и в приблизительно таких же условиях снова провёл серию из 100 выстрелов. Вероятно ли, что он снова попадёт 83 раза? Не очень. Но количество попаданий вряд ли будет сильно отличаться от предыдущего результата. Пусть, например, стрелок попал 79 раз. Тогда относительная частота поражения цели составит: .
В третьей серии из 100 выстрелов, проведённой при похожих обстоятельствах, данный стрелок попал 81 раз, и т.д.
Иногда могут случаться блестящие серии более 90 попаданий, иногда «провалы», но среднее количество попаданий будет варьироваться около 80. И когда количество фактически проведённых испытаний станет достаточно большим, то речь зайдёт о статистической вероятности. Если в одинаковых (примерно одинаковых) условиях проведено достаточно много испытаний, то за статистическую вероятность события принимают относительную частоту данного события либо близкое число.
Предположим, что на протяжении нескольких лет наш спортсмен, сохраняя стабильный уровень подготовки, совершил 10000 выстрелов и попал 8037 раз. Относительная частота поражения цели составит: и за статистическую вероятность его результативности целесообразно принять
, которая становится теоретической оценкой, например, перед грядущими соревнованиями.
Представьте, что во время лекции этот профессионал зашёл с винтовкой в аудиторию и прицелился. Теперь вам должен стать окончательно понятен смысл фразы «Стрелок попадает в мишень с вероятностью 0,8» =) =)
Именно так собирается богатая спортивная статистика в различных видах спорта.
Аналогичная история с утверждением «Вероятность изготовления бракованной детали на данном станке равна 0,05». Эту оценку невозможно получить с помощью классического определения вероятности – она следует только из практики! Если на станке произведены десятки тысяч деталей и на каждую, скажем, тысячу выпущенных деталей, приходится в среднем 50 бракованных, то в качестве статистической вероятности брака принимается значения .
В Задаче 2 урока Локальная и интегральная теоремы Лапласа фигурировала вероятность рождения мальчика . Откуда взялось данное число? Из многолетнего подсчёта фактически рождённых детей в определённом регионе. В указанной статье мы выяснили, что это вовсе не значит, что среди 100 новорожденных будет ровно 52 мальчика. В следующей сотне рождённых их может оказаться, например, 45, и относительная частота
будет далека от истины. Но если рассмотреть выборку в тысячи и десятки тысяч младенцев, то
отклонится от
совсем-совсем незначительно. И это уже не случайность. Как известно, такое соотношение новорожденных сложилось эволюционно – по причине бОльшей смертности мужчин.
В учебном пособии В.Е. Гмурмана есть весьма удачный пример, в котором продемонстрировано, как при подбрасывании монеты относительная частота появления орла приближается к своей вероятности (полученной по классическому определению):
Какой можно сделать вывод? С увеличением количества независимых испытаний случайность превращается в закономерность. Однако следует помнить, что порядок выпадения орлов непредсказуем, о чём я подробно рассказывал на уроке Независимые испытания и формула Бернулли.
Вернёмся к европейской рулетке с 18 красными, 18 чёрными секторами и 1 зеро. В самом примитивном варианте игры: ставим на «красное» или «чёрное», и если шарик остановился на секторе другого цвета (вероятность ) – ставка проигрывается. В случае успеха – удваиваемся (вероятность
).
В отдельно взятом сеансе игры отдельно взятый человек может выиграть, причём выиграть по-крупному. Это случайность. Но, совершая миллионы оборотов, рулетка на протяжении веков приносит неизменную прибыль владельцам казино. И это – закономерность. Существует байка о том, что крупный выигрыш не отдадут, а если и отдадут, то «вы с ним не дойдёте до дома». Чистая «киношная» фантазия. Да, кому-то повезло, но сколько проиграется?! К тому же человек, посещающий подобные заведения, с большой вероятностью придёт снова и «сольёт» ещё больше. А чтобы он вернулся, казино, скорее наоборот – создаст максимальный комфорт и безопасность для «счастливчика».
Другой, во многом условный, пример: пусть в некой лотерее приняло участие билетов, из которых
выиграли хоть какой-то приз. Таким образом, относительная частота выигрыша составила:
. Поскольку билетов продано очень много, то с большой вероятностью можно утверждать, что в будущем при сопоставимых объемах продаж доля выигравших билетов будет примерно такой же, и за статистическую вероятность выигрыша удобно принять значение
.
Организатор лотереи знает, что из миллиона проданных билетов выиграют около 300 тысяч с небольшим отклонением. И это закономерность. Но всем участникам лотереи достаётся…. – правильно, случайность! То есть, если вы купите 10 билетов, то это ещё не значит, что выиграют 3 билета. Так, например, выигрыш только по одному билету – есть событие очень даже вероятное, по формуле Бернулли:
А если учесть тот факт, что львиная доля выигрышей – сущая мелочь, то картина вырисовывается совсем унылая, ибо маловозможные события не происходят. Ситуацию спасают красочные телевизионные розыгрыши и различные психологические трюки.
Желающие могут самостоятельно исследовать вероятность выигрыша в различные лотереи – вся статистика есть в свободном доступе. Особо рекомендую подсчитать вероятность крупного выигрыша.
Практическая часть урока будет тесно связана с только что изложенным материалом:
Вероятность отклонения относительной частоты от вероятности
Вероятность того, что в независимых испытаниях относительная частота
события
отклонится от вероятности
(появления данного события в каждом испытании) не более чем на
, приблизительно равна:
, где
– функция Лапласа.
Собственно, эта формула и выведена из интегральной теоремы Лапласа.
Итак, расклад следующий: в распоряжении имеется вероятность наступления события
, которая предварительно получена с помощью классического/геометрического определения или посредством серьёзной статистической оценки. Планируется провести
независимых испытаний, в которых событие
может наступить некоторое количество раз, причём значение
, разумеется, предсказать нельзя. Полученная относительная частота
может оказаться как больше, так и меньше вероятности
(поэтому нужен знак модуля).
Требуется найти вероятность того, что в серии из независимых испытаний, расхождение между относительной частотой и теоретической вероятностью
, будет не больше, чем заранее заданное число, например, не больше, чем
(один процент).
Начнём с самых маленьких :=)
В некотором регионе в результате многолетнего статистического исследования установлена вероятность рождения мальчика . С какой вероятностью можно утверждать, что среди следующей тысячи новорожденных, относительная частота появления мальчика отклонится от соответствующей вероятности не более чем на 0,02?
Решение: используем формулу
По условию:
Таким образом:
– искомая вероятность.
Напоминаю, что значения функции Лапласа можно найти по соответствующей таблице или с помощью расчётного макета (пункт 5).
Ответ:
Каков смысл полученного результата? Если рассмотреть достаточно много групп по 1000 новорожденных в каждой, то примерно в 79,6% этих групп доля мальчиков будет находиться в пределах:
Или, умножая все три части на тысячу: от 500 до 540 мальчиков.
На самом деле рассмотренная задача эквивалентна следующей: «Найти вероятность того, что среди 1000 новорожденных будет от 500 до 540 мальчиков, если вероятность рождения мальчика равна 0,52». А эта задача как раз и решается через известную вам интегральную теорему Лапласа.
Посмотрим на правую часть формулы и проанализируем, как при прочих равных условиях рассматриваемая вероятность зависит от размера выборки?
При росте «эн», дробь будет увеличиваться, а, как вы знаете,
. То есть, вероятность отклонения
рано или поздно приблизится к единице. И это неудивительно – как неоднократно показано в предыдущих примерах, при росте
относительная частота события
всё ближе и ближе стремится к вероятности
данного события, а значит, при достаточно большом количестве испытаний разница
практически достоверно будет не больше наперёд заданного числа
.
Наоборот – при уменьшении «эн» дробь тоже будет уменьшаться, следовательно, значение
будет приближаться к нулю
. Нетрудно понять, что при слишком малой выборке теорема Лапласа работать перестанет. И действительно – ведь все
детей в семье могут вообще оказаться девочками. Такое бывает.
Пара задач для самостоятельного решения:
Производится некоторый опыт, в котором случайное событие может появиться с вероятностью 0,6. Опыт повторяют в неизменных условиях
раз. Определить вероятность того, что в 800 независимых испытаниях относительная частота появления события
отклонится от вероятности не более чем: а) на 0,05, б) на 0,03
Условие сформулировано в общем виде, как оно чаще всего и бывает. Ещё раз повторим суть задания: проводится опытов, в результате чего событие
наступит
раз – сколько именно, предугадать невозможно. Относительная частота составит
. С другой стороны, известна вероятность
события
, которая установлена ранее с помощью классического/геометрического определения или путём сбора солидной статистики. Требуется найти вероятность того, что относительная частота отклонится от вероятности, не более чем на
:
В чём смысл? С найденной вероятностью
можно утверждать, что относительная частота будет заключена в следующих пределах:
Или в абсолютном количестве появлений события :
Надо сказать, что границы достаточно вольные и вероятность должна получиться большой. Если же наперёд заданная точность составит
, то промежуток сократится:
, и, понятно, что вероятность
данного события будет меньше.
Следующий пример для самых мудрых участников лотереи 🙂
Вероятность выигрыша в лотерею равна 0,3. Продано 600000 билетов. Найти вероятность того, что относительная частота выигрыша отклонится от вероятности выигрыша не более чем на .
Иными словами, требуется найти вероятность того, что относительная частота выигрыша будет находиться в пределах: (то есть выиграют от
до
билетов).
Эта информация очень важнА для корректного распределения призового фонда. Но, повторюсь, пример достаточно условный, т.к. не учитывает правила и ограничения той или иной лотереи.
Краткое решение и ответы в конце урока.
На практике не менее популярна и обратная задача:
Как определить, сколько нужно провести испытаний
чтобы с заранее заданной вероятностью
обеспечить желаемую точность
?
В предыдущем примере получена довольно высокая вероятность того, что количество выигравших билетов окажется в достаточно узком интервале:
билетов
относительно наивероятнейшего количества
.
Но, конечно же, хочется, чтобы вероятность была побольше:
Вероятность выигрыша в лотерею равна 0,3. Сколько билетов должно участвовать в розыгрыше, чтобы с вероятностью не меньшей чем , можно было ожидать, что относительная частота выигрыша отклонится от теоретической вероятности не более чем на
?
Решение: используем ту же формулу .
В нашем распоряжении находятся следующие величины:
По условию, требуется найти такое количество билетов , чтобы с вероятностью не меньшей чем
разница
составила не более чем
. Ну, а коль скоро с вероятностью «не меньшей», то задачу следует разрулить через нестрогое неравенство:
Подставляем известные значения:
Делим обе части на два:
По таблице значений функции либо с помощью расчётного макета (пункт 5*) по известному значению функции
находим соответствующий аргумент:
. Таким образом:
Возведём обе части в квадрат:
И финальный штрих:
Ответ: для того, чтобы с вероятностью не меньшей чем , можно было ожидать, что
, в розыгрыше должно участвовать не менее 1397844 билетов.
Но это ещё нужно столько продать =) Или же аппетит придётся поубавить. Или пожертвовать точностью, то есть увеличить
.
Представим ответ в абсолютных значениях:
То есть, в 99% аналогичных розыгрышей количество выигравших билетов будет заключено в пределах от до
.
Кстати, выполним проверку, решив прямую задачу: , что и требовалось проверить.
Заключительная миниатюра для самостоятельного решения:
Проводится некоторый опыт, в котором случайное событие может появиться с вероятностью 0,4. Определить, сколько опытов нужно провести, чтобы с вероятностью большей, чем 0,9 можно было ожидать отклонения относительной частоты появления события
от
не более чем на 0,05
Не ленимся 😉 Ответ в таких задачах следует округлять до бОльшего натурального значения! Краткое решение и ответ внизу страницы.
Первый цикл уроков по теории вероятностей подошёл к концу и даже начал плавно переходить в математическую статистику, так, если в рассмотренной задаче значение не известно, то это уже статистическая задача об оценке этой вероятности.
И я уже хотел поставить традиционное пожелание «Везения в главном», но вдруг задумался…. Имеет ли в нашей жизни значение случайность? Безусловно! Нет, я не преуменьшаю значение системной и упорной работы, после которой следуют закономерные результаты. Однако и везение играет немаловажную роль: встретить хороших друзей, встретить «своего» человека, найти деятельность по душе и т.д. – всё это нередко происходит благодаря случаю….
Жду вас снова и до скорых встреч!
Задача 2: Решение: используем формулу .
В данной задаче:
а) Если , то:
– вероятность, того, что при 800 испытаниях относительная частота появления события
отклонится от вероятности данного события не более чем на 0,05.
Это событие является практически достоверным.
б) Если , то:
– вероятность, того, что при 800 испытаниях относительная частота появления события
отклонится от вероятности данного события не более чем на 0,03.
Ответ:
Задача 3: Решение: используем формулу .
В данной задаче:
Таким образом:
– вероятность, того, что относительная частота выигрыша отклонится от теоретической вероятности не более чем на 0,001.
Ответ:
Задача 5: Решение: используем формулу .
В данном случае:
Таким образом:
Ответ: необходимо произвести не менее 259 опытов.
Автор: Емелин Александр
(Переход на главную страницу)
«Всё сдал!» — онлайн-сервис помощи студентам
Источник