- Про кондиционер, или цикличность включения/выключения компрессора. Часть 2.
- Почему отключается муфта кондиционера. Подробное описание работы кондиционера Ford
- Не холодит: типичные поломки кондиционера, и что с ними делать
- Как это работает?
- Поломка первая: утечка
- Перегрев и аварийный сброс
- Неисправность компрессора
- Неисправности терморегулирующего вентиля и дросселирующей вставки
- Неисправности системы управления
- Как определить самостоятельно, что не работает
Про кондиционер, или цикличность включения/выключения компрессора. Часть 2.
И снова здравствуйте, Друзья! Продолжу тему про кондиционер. За ранее извиняюсь за не законченный пост. Впереди ещё много информации и не мало фото. Всё в подробностях, как я люблю. )
Итак, про кондиционер, или цикличность включения/выключения компрессора. Часть 2.
После дозаправки кондиционера, я смог его по настоящему испытать только 4дня спустя, когда поехал на выходные в деревню. При этом, на неделе, я купил очиститель кондиционера и новый фильтр салона. Начитавшись БЖ, решил произвести очистку испарителя кондиционера и поменять салонный фильтр. Раз уж занялся кондиционером, то надо идти до конца. ))
По пути в деревню включил кондиционер, вентилятор на двоечку. Вроде бы всё хорошо. Кондей холодит, в салоне приятно. Но любопытство берёт верх, и я решил прибавить )). Так сказать, испытать, на что он способен. И тут началось…
Не прошло и минуты, как компрессор начал включаться и выключаться с периодичностью в 3-5 секунд. Холоднее в салоне не стало, зато машина начала дёргаться, как будто её постоянно за ж*пу хватали. И это на скорости 90 км. Я честно говоря, даже напугался немного. Не ожидал такого поведения. Снова переключил вентилятор на 2 и всё нормализовалось. Ладно, думаю. Приеду в деревню, почищу испаритель, может всё пройдёт.
На следующий день приступил к очистке испарителя. Для начала извлёк фильтр салона. Грязи хоть отбавляй.
Сразу вспомнил, что в автосервисе мне фильтр меняли просто, вынул, поставил. Ни продуть, не пропылесосить. По этому решил всё это проделать. Включил вентилятор на 4 и поигрался с режимами. Грязи вылетело море, потом ещё и салон пылесосил )).
Следующим этапом раздербанил старый фильтр, а в крышке просверлил отверстие 5мм, под трубку пенного очистителя. Для пущей верности укрепил ее термоклеем.
Далее, как написано в инструкции, вдул весь очиститель в испаритель, а с низу подставил тазик для жижи, что польется из дренажа. Подождал, пока с испарителя перестанет капать, завел двигатель и включил кондиционер на полную. Режим рециркуляции и вентилятор на 4. Через 10 минут первая часть очистки была завершена. Вот что в итоге оказалось в тазике.
Дальше по плану запуск дымовой шашки. Вот этой вот:
Описывать не стану, думаю по фото будет понятно. )
Это был последний этап очистки кондиционера. И вот результат:
Ну всё, ставлю новый салонный фильтр и можно в путешествие.
Как раз такое не большое путешествие и намечалось на следующий день. Поехали мы с семьёй за 70 км от дома, на родину Валерия Чкалова, по музеям походить. Всю дорогу работал кондиционер, на 2 скорости. Нам было очень комфортно. Но вот дорога обратно опять началась с цикличности. На этот раз компрессор зациклился даже на 1 скорости вентилятора. Обороты падали, думал двигатель заглохнет, а компрессор уже визжать начал, того и гляди из него что-то вылетет. Эта ситуация меня крайне напугала. Поспешно выключив кондиционер, уже стал прикидывать на какой ремонт я попал. До дома добирались с отключенным кондиционером и открытыми окнами. Уже дома, я подключил автомобиль к диагностике Torque, через обд сканер. Вывел на экран давление хладагента, напряжение датчика хладагента и индикатор включения/ выключения компрессора. Завел машину и включил кондиционер на 1. И вот что я увидел:
Теперь немного поясню. При запуске и прогреве двигателя, при выключенном компрессоре, давление хладагента начинает рости с 9 бар и, где-то до 14 бар. Далее, при включении кондиционера и скорости вентилятора на 1, давление достигает 20 бар на ХХ. Если поднять обороты до 2000, то 25 бар. Включаю вторую скорость вентилятора и на ХХ уже 25 бар. А если поднять обороты двигателя до 2000, или просто включить третью скорость вентилятора, то давление хладагента поднимается до 30 бар и компрессор выключается. Затем давление падает до 28,5 бар за 3 секунды и компрессор снова включается. Начинается такая вот цикличность. При этом кондей холодит и в салоне хорошо. Цикличность пропадает, когда вентилятор переводишь в положение 1. Давление при этом падает до 25 бар и компрессор начинает работать нормально. Вентилятор охлаждения радиатора включается практически сразу после включения кондиционера и работает постоянно и не прерывно. Выключается уже спустя минуту, после выключения кондиционера. Вот такая вот история, братцы. Извините, что из далека начал, просто хотел показать хронологию своих действий. Вдруг что-то из них могло повлиять на работу данного устройства. Всех благодарю за внимание! И очень надеюсь на ваши полезные советы ). На этом всё, друзья, всем добра!
Источник
Почему отключается муфта кондиционера. Подробное описание работы кондиционера Ford
Эх, если бы мне удалось найти такой материал по нашему кондиционеру пару месяцев назад…
Вот так, в компилированном виде…
Да, с цифрами, с параметрами, с описанием процессов…
Но нет, ничего не нашлось, я озадачился, разыскал параметры и ТТХ наших датчиков и полностью разобрал принцип работы нашей холодильной машины. Сегодня делюсь информацией с вами…
И теперь, оглядываясь назад… я понимаю, на сколько убоги мастера предлагающие свои услуги в области ремонта и обслуживания кондиционеров…))
Тупо рубануть бабла, на удачу — получилось, не получилось… мы сделали все, что могли…
В общем, специалистов нет, и их нет во всех областях нашей жизни… К сожалению.
Интернет заполнен слухами и домыслами на счет работы нашей системы…
Должна муфта щелкать, не должна… у кого-то щелкает, у кого нет…
Cегодня, раз и навсегда, поставим в этом вопросе жЫрную точку…
Мне давно не давало покоя, отсутствие информации о том, как работает холодильная машина нашего кондиционера, при условии, что у нас установлена расширительная трубка, (ну как бы допустимо, в бытовых
холодильниках тоже все работает через капилляр) но при этом производительность компрессора в нашей системе зависит от оборотов двигателя!
А значит в системе перегоняется разное количество хладагента. Если мы палим по трассе или стоим в пробке… кто-то должен регулировать поток хладагента(системы с ТРВ, в основном япошки) или производительность компрессора(современные компрессоры с изменяемым углом наклона шайбы…)
У нас нет ни ТРВ и компрессор простой как насос от велосипеда…
Так… для начала пройдемся по датчикам.
У нас установлено два датчика.
Переключатель (типа) «Низкого давления» Ford 1 016 565
Он установлен на Ресивере-осушителе.
Переключатель Высокого давления Ford 4 834 170
Он установлен в магистрали высокого давления.
Для фокусов, это датчики абсолютного давления типа Ford 4 673 935 (Типа электронный манометр.)
(там несколько разновидностей, бывают с выходом напряжения, бывают с ШИМ… это не важно, потом поймете почему)
Это не просто реле давления…
Этот датчик сообщает мозгам давление в магистрали высокого давления. Фокусоводы в курсе как они ломаются и как диагностировать неисправность
Пока все банально и ничего нового…
Но…
Нет.
На всех схемах, что мне удалось встретить, датчики подписаны именно так, как я их представил выше, переключатель высокого, переключатель низкого…
Но если вы посмотрите на свои датчики… то вдруг найдете на переключателе высокого давления 4 провода!
А на датчике низкого… два…
Снова смотрим схемы.
На схемах указано, что выключатель высокого давления имеет 4 контакта, совмещен с выключателем низкого!
Интересно, а зачем переключатель низкого давления в магистрали высокого давления?
А это, как описано в мануалах, «защитный механизм»… при утечке фреона давление падает ниже определенного предела и мозги понимают — авария.
Тоже самое по переключателю высокого давления… При перегреве конденсора давление в магистрали повышается и переключатель сообщает мозгам — «авария»… и тот отключает компрессор.
Ту же функцию выполняет и датчик абсолютного давления в Фокусах… если выше максимально допустимого — перегрев, если ниже какого-то порога — утечка…
Разница лишь в том, что наши мозги видят только «Событие» — переключатель клацнул… а Фокусный мозг видит именно «цыфру давления» в барах, в вольтах… но это все «аварийные датчики»
Так, хорошо, а что за «переключатель низкого давления» у нас и у фокусников установлен на бачке фильтра осушителя?
После долгих поисков, исследования разных холодильных установок разных фордов, в том числе на англоязычных ресурсах… я наткнулся на занимательный документ.
Это аналог нашего Ford 1 016 565
Clutch Cycling Switch…
Так это и не переключатель низкого давления ВОВСЕ!
Это Clutch Cycling Switch!
Дословно «Циклический Выключатель Сцепления».
Циклический, твою мать!
Теперь сложилась вся картина работы нашего холодильника…
И не только нашего, но и фокусоводов!
Да и во всех системах, где установлен датчик-переключатель Ford 1 016 565 или его аналог.
Как видно, этот переключатель, установленный, напомню на бачке фильтра-осушителя (или в магистрали НИЗКОГО давления для всех остальных авто)
-замкнет контакты при 44psi (
3 Бар)
-разомкнет их при 24psi(
Совмещенный переключатель (Выс+Низк), Ford 4 834 170, установленный в магистрали ВЫСОКОГО давления:
— Разомкнет контакты переключателя аварийного превышения давления при 25 и выше Бар.
— Замкнет контакты переключателя аварийно низкого давления при 0.8 Бар.
Теперь подробнее о работе системы.
1. Кондиционер выключен.
При нормальном наполнении системы фреоном и температуре воздуха около +10 (и выше) градусов цельсия…
давление в системе будет выше 3 Бар, контакт Clutch Cycling Switch(далее в тексте CCS) будет замкнут,
контакт переключателя высокого давления будет замкнут(далее ПВД), контакт переключателя аварийно низкого давления (далее ПНД) будет разомкнут.
Это нормальное состояние исправного кондиционера.
Такое состояние переключателей «собирает цепь» и позволит компрессору включиться.
2. Включаем кондиционер. (холостые обороты двигателя!)
Сигнал низкого уровня из блока управления климатической системой(не важно какой, механической или климат контроль), согласно схеме, через замкнутые контакты CCS и ПВД достигает блока управления двигателем. И он вырабатывает сигнал управления — включает муфту компрессора.
Компрессор начинает вращаться, перекачивает газ из ресивера-осушителя, магистрали низкого давления в конденсор и магистраль высокого давления.
В конденсоре начинает расти давление и температура, газ переходит в жидкую фазу — конденсируется…
При этом, давление в магистрали высокого давления, в зависимости от температуры окружающей среды держится на уровне 8-12 Бар.
В магистрали низкого давления, давление опускается до 1.8-2.5 Бар.
Этого хватает чтобы продолжительно поддерживать температуру испарителя на уровне 2-5 градусов
Это устойчивое состояние!
Производительность компрессора на ХХ не очень велика, не превышает пропускной способности расширительной трубки.
Давление на всех участках магистрали не выходит за пределы переключения (или измерения, для Фокусов)
3. Поднимаем обороты до 1500 и выше.
Компрессор значительно эффективнее перекачивает газ
В конденсоре еще больше растет давление и температура.
При этом, давление в магистрали высокого давления, в зависимости от температуры окружающей среды и оборотов двигателя растет до уровня 18-24 Бар.
В магистрали низкого давления, давление опускается до 1.6 Бар.
И… контакты CCS размыкаются…
Компрессор отключается!
Как только давление в магистрали низкого давления вырастет до 3 бар, CCS снова замкнет контакты и снова
ЭБУ включит компрессор.
Длительность цикла вкл-выкл может быть от 2с/20с работа/пауза до непрерывной работы муфты, зависит от
Температуры внешней среды, от оборотов двигателя, от скорости вращения вентилятора в салоне…
Этот ЦИКЛ и обеспечивает «Циклический Выключатель Сцепления»(муфты кондиционера)
Главное, чтобы он клацал при нужных давлениях!
Если давление переключения изменится с 1.6-3.0 Бар до, скажем 2.5-3.5 Бар, то температура на испарителе будет не около нуля а около 10-15 градусов…
Это самый важный и основной, «рабочий» датчик, от которого зависит правильность работы и производительность кондиционера!
Его нельзя замыкать, обходить или как то вмешиваться в его работу.
От него зависит температура испарителя.
Из за того что этот переключатель (CCS) всю свою жизнь обречен клацать по несколько раз в минуту, он подвержен износу… параметры уплывают…
И догадайтесь, почему после замены «забитого фильра-осушителя» вдруг, волшебным образом решается проблема?
Да потому что, в 90% случаев этот переключатель идет в комплекте с фильтром )))
Источник
Не холодит: типичные поломки кондиционера, и что с ними делать
Не так давно я рассказал, как появились кондиционеры в автомобиле. Далеко не сразу инженеры смогли скомпоновать все компоненты системы таким образом, чтобы система была компактной, производительной и удобной в работе. Но схема, придуманная добрых 70 лет назад, пока держится. И неплохо справляется работой – если, конечно, она работает. В стационарных устройствах, вроде бытовых холодильников, и тем более промышленных, особенных проблем с ресурсом нет, система работает десятки лет без перерыва в импульсном режиме. Но в машине почему-то уже после трех-четырех лет службы начинаются сложности, падает производительность, и, как показывает практика, ремонт оказывается дорогим. Почему так происходит, и как снизить издержки?
Как это работает?
Схема работы любого кондиционера очень проста, посмотрите на картинку:
C хема может немного различаться в зависимости от того, применяется ли терморегулирующий вентиль (ТРВ) или же просто дросселирующая вставка, но отличия минимальны.
Компрессор с электромагнитной муфтой на большинстве автомобилей приводится от двигателя ремнем. На гибридах и электромобилях он может иметь привод от электродвигателя. Конструкция этого узла может быть достаточно разнообразной. Задача компрессора – сжимать газ, при этом он разогревается.
– это наш «радиатор кондиционера», который расположен перед основным радиатором двигателя. Это просто большой радиатор, но работающий под большим давлением. Разогретый и сжатый газ поступает в конденсатор, охлаждается и выходит уже в виде жидкости.
Ещё в схеме встречается фильтр-осушитель, в нем находится некоторое количество влагопоглощающего состава – например, цеолит ХН-9. Эта деталь является расходным материалом, ее требуется менять по регламенту раз в 5-6 лет. В фильтре задерживается влага, которая способствует коррозии, а заодно и механические загрязнения.
– это небольшой радиатор, в котором фреон испаряется и отбирает тепло у воздуха. Располагается он непосредственно в корпусе системы климат-контроля автомобиля.
В системах с терморегулирующим клапаном (ТРВ) последний часто выполнен отдельным элементом, но может быть конструктивно неотделим от испарителя. В корпусе ТРВ жидкий фреон проходит через миниатюрное отверстие. Проходное сечение и давление в контуре регулируются иглой. В действие она приводится от небольшого термостата, в котором в качестве рабочего тела обычно используется газ R 12, хотя привод может быть и электрическим, и механическим. Клапан регулирует поток жидкости и, следовательно, хладопроизводительность системы.
Можно поступить проще – поставить дросселирующую вставку. Это просто клапан с отверстием постоянного диаметра. Но тогда для нормальной работы системы придется циклически включать и выключать компрессор и использовать аккумулятор жидкости после испарителя. Но КПД такой системы будет немного выше, примерно на 10%. И потому именно ее используют в бытовой технике и в гибридах. В автомобилях она тоже встречается все чаще.
– это узел, который доиспаряет хладагент и препятствует попаданию в компрессор фреона в жидкой фазе. А датчик в нем регулирует хладопроизводительность системы. В него также встроены осушитель и фильтр, так что в системе с аккумулятором отдельный фильтр-осушитель обычно не используется.
Остальные компоненты системы – это трубки. Их количество обычно колеблется между шестью и дюжиной. Также в систему входят один-два датчика для определения давления у систем с ТРВ и как минимум два для систем с аккумулятором и дросселирующей вставкой.
Управляющая электроника обязательно нужна в системах с дросселирующей вставкой для эффективной работы, но фактически применяется даже на системах с ТРВ для предохранительных функций и более удобного управления системой.
Поломка первая: утечка
В большинстве случаев поломка кондиционера ассоциируется с утечкой фреона. На практике потеря рабочей жидкости – действительно самая частая неисправность системы. Причин может быть много: механические повреждения трубок, конденсатора, корпуса фильтра-осушителя или просто нарушение соединений. Даже совершенно исправная система не рассчитана на эксплуатацию без дозаправки газом более 5-7 лет. При таком количестве быстроразъемных соединений это попросту неизбежное зло.
Запаять все трубки наглухо мешают особенности конструкций автомобилей. Так, на многих моделях снятие пакета радиаторов – обязательная процедура при регламентных работах по замене ремня или цепей ГРМ, доступе к турбинам, помпам и другому навесному оборудованию спереди.
Механические повреждения от вибраций, ударов камней или попросту перетираний тоже встречаются регулярно. Объясняется это легко: большая часть системы расположена открыто в моторном отсеке и ничем не защищена от пыли и грязи, рядом работает вибрирующий мотор, машина ездит по ямам, испытывая знакопеременные ускорения. Да еще и камни летят в радиаторы с хорошей скоростью. Неудивительно, что «чистая» утечка встречается не так уж редко, и это действительно одна из основных причин отказа системы.
Диагностируются утечки достаточно хорошо. Если проблема не выявлена при визуальном осмотре, то вакуум-тест покажет наличие течи, и зачастую место утечки можно будет определить на слух. Если же нет, то заправка системы хладагентом с краской или УФ-компонентом поможет выявить проблему.
К сожалению, иногда встречаются случаи действительно медленной утечки, возникающей только при рабочей разнице температур и длящейся неделями. С такой течью уже ездить не будешь, заправлять придется слишком часто, и найти простыми способами ее может быть очень сложно. В этом случае в ход идут варианты, как при диагностике «наобум». Мастера начинают менять компоненты последовательно. Чаще всего виновниками утечек являются или конструктивно слабые места системы, что не редкость у автомобиля, либо просто утечки трубок в передней части или с конденсатора, как наиболее крупной и уязвимой детали.
Перегрев и аварийный сброс
В системе есть множество предохранительных систем. Например, датчики давления отключат компрессор при превышении рабочей температуры, а если давление все равно растет, аварийный клапан сброса в компрессоре или фильтре выбросит фреон при аварийном превышении. И это правильно: соединения всех трубопроводов рассчитаны на работу до определенного давления и дальше просто начинают пропускать газ наружу.
Причина повышения давления в контуре до аварийного обычно проста: это перегрев. Реже давление набирается компрессором до аварийного предела. Виноваты в этом могут быть как остановки вентилятора радиаторов, так и повышенная теплопередача от вентилятора системы охлаждения, неправильно выбранный газ или его объем, поломка ТРВ или дросселирующей вставки или забитый осушитель или аккумулятор. Ну и наконец, возможен перегрев самого компрессора.
Таким образом, отсутствие газа в системе может говорить не только о механическом повреждении контура, но и о проблемах в его работе, в результате которых произошел перегрев и аварийный сброс давления. И потому при каждой заправке кондиционера обязательно контролируйте чистоту всего пакета радиаторов, работоспособность всех вентиляторов во всех режимах, особенно на максимальной производительности, а также работу датчиков давления системы.
Неисправность компрессора
Даже при наличии газа в системе кондиционер может не охлаждать воздух и не развивать нужного давления. Причин не так уж много. Наиболее частая проблема – это разрушение самого компрессора.
На большинстве машин он поршневой аксиальный, но встречаются и рядные, и роторно-поршневые конструкции. В любом случае, в механической его части встречаются такие проблемы как задиры, прихваты, разрушения шатунов и других механических узлов. Бывает, что заклинивают или текут клапаны, штуцеры и даже соединения корпуса.
Если компрессор разрушен, он поставляет в систему много мусора, часто это повреждает еще один узел.
К счастью, самой распространенной проблемой всех компрессоров является банальный отказ электромагнитной муфты, в которой порой подгорает и изнашивается простенькое «сцепление», а электромагнит сгорает. Также муфта часто выходит из строя по вине подшипника.
Наиболее простые внешние конструкции легко меняются на месте, даже без снятия компрессора с машины. Более сложные конструкции со встроенной герметичной муфтой надежнее, но для замены неисправных элементов потребуют серьезной переборки самого компрессора.
Замена опорного подшипника муфты также зачастую потребует применения пресса, и ее не получится выполнить, не снимая сам компрессор с машины. Впрочем, иногда достаточно подрегулировать зазор или удалить грязь из муфты, и узел восстанавливает работоспособность.
К поломкам чаще всего приводит или длительный перегрев и перегрузка системы при отключенных предохранительных датчиках, или недостаток или неправильно выбранный тип смазки и попадание продуктов разрушения фильтра-осушителя в поршневую группу компрессора.
Неисправности терморегулирующего вентиля и дросселирующей вставки
Об этих деталях слишком часто забывают, но, тем не менее, это одни из самых тонких узлов всей конструкции. Их задача – создать перепад давления в системе и спровоцировать испарение хладагента.
Основная проблема в том, что это очень тонкие устройства. Отверстия очень маленькие, а у ТРВ его пропускная способность еще и регулируется иглой. Мусор забивает эти отверстия и нарушает работу системы. При вакуумировании перед заправкой система может очиститься, но вероятность этого невелика. Повышенное сопротивление ТРВ и дросселирующей вставки приводит либо к полной неработоспособности системы, либо к очень низкой ее производительности. Часто компрессор просто не может прокачать фреон, и происходит скачок давления с последующей его утечкой.
Системы с ТРВ устроены несколько проще, поскольку работают в постоянном режиме и с полным испарением хладагента перед испарителем, а системы с аккумулятором и дросселирующей вставкой имеют более простую механическую часть. Но при этом требуют контроля работы компрессора с помощью электроники, благодаря чему их испаритель «затопленного типа» примерно на 10% более эффективен, чем обычный. Но есть и еще один нюанс. Аккумулятор должен препятствовать попаданию хладагента в жидкой фазе снова в насос, иначе он выйдет из строя в результате гидроудара. И при непрогретом моторе или при включении зимой появляется шанс загубить компрессор еще и таким способом.
Приводить к неработоспособности системы могут и сбои в работе электронной системы регулирования.
Неисправности системы управления
Собственно, электроника и электрика машины не так уж редко являются причиной неработоспособности системы. Список возможных неисправностей довольно большой, но все сводится к нескольким критичным: неисправность системы подачи питания на муфту кондиционера, неисправность системы регулирования работы электровентиляторов радиаторов и, наконец, некорректная работа системы датчиков-предохранителей.
Как определить самостоятельно, что не работает
Если при включении вы не слышите характерного звука и нет изменения оборотов двигателя, то проверьте наличие фреона. Можно «неправильным» способом, просто нажав на клапан заправочной горловины, хотя этот метод не даёт возможность оценить количество фреона. Зато он работает и при отключенном компрессоре. Если «пшик» есть, то вы потратили немного фреона, но убедились, что контур под давлением. Количество фреона можно оценить либо по рабочему давлению, либо при работающем компрессоре через «глазок». Если давления нет совсем, то вам придётся ехать к мастеру, проверять трубки и радиатор.
Второй на очереди стоит электрика. Проверьте провода на датчики давления, они расположены на радиаторе кондиционера, а в случае системы с аккумулятором – еще и на нем. Они должны быть целы. Проверьте предохранители муфты кондиционера и системы климат-контроля и вентиляторов радиатора. Визуально попробуйте оценить работоспособность муфты, если есть возможность. Проверьте наличие ремня на шкиве кондиционера.
Если компрессор включается, но холода нет, то полезно определить количество фреона. Обычно на трубках есть глазок для визуальной оценки состояния контура. Если при включении сначала проходят пузырьки, а потом их почти не остается, значит, компрессор качает, и фреона достаточно. Проблема кроется либо в клапане ТРВ, либо в работе конденсатора и вентиляторов. Если пузырьки идут постоянно, то есть беда с количеством фреона, нужно просто дозаправить систему. Если в глазке просто белая взвесь, то фреона почти нет, нужно срочно выключить систему и дозаправить ее.
Можно для гарантии потрогать трубки рукой. Магистраль низкого давления к компрессору должна быть холодной. Если она ледяная, а в салоне жарко, то что-то не так с системой смешения потоков воздуха, или испаритель просто забит грязью снаружи. Трубка высокого давления на радиатор кондиционера должна быть горячей. Это означает, что компрессор работает, хотя бы частично.
Собственно, дальше без манометра и специальной заправочной станции сделать что-то не получится. Если компрессор слабо качает, фреона немного, но есть, или если система регулирования работает некорректно, то придется диагностировать систему у специалиста. И помните: не бывает неремонтируемых узлов, трубки сваривают даже алюминиевые, радиаторы чинят и меняют, компрессоры стоят не миллионы.
О «правильных» ценах на типичный ремонт поговорим в следующем материале.
Источник